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A

e PREFACE

In December 1960, Space Technology Laboratories, Inc., was awarded a
one-year contract by the Jet Propulsion Laboratory for a Space Systems
Analysis Study. This contract was later extended for an additional eight
months, and this report sutmmarizes the work accomplished between January
1961 and March 1962. Further details may be found in the seven formal reports
and twenty-four informal memoranda listed under REFERENCES.

Generally, the work performed under the SSAS Contract has been confined
to the consideration of advanced missions not yet in the development stage, or

to generating new techniques applicable to wide classes of missions. This work

falls roughly into two categories: (1) Lunar trajectories and guidance studies \/

and (2) Orbit determination studies. In this Preface, the motivations behind

~

these studies will be explained and the scope of the studies indicated.
LUNAR TRAJECTORIES AND GUIDANCE STUDIES

At the time this study was begun, it was felt that the area of earth-to-moon
trajectories and missions had already been thoroughly and exhaustively studied
by JPL, STL and others in connection with such specific missions as ABLE-5,
RANGER, SURVEYOR, etc. By contrast, the area of lunar return was under-
stood in only a rough and sketchy way. Therefore a concentrated effort was

directed toward this problem.

First, it was necessary to be able to generate with ease moon-to-earth
trajectories satisfying specified end conditions. For this purpose,’ the Analytic
Lunar Return Program, which is described in Part I, was developed (see
References [2] and [4] ) The three-dimensional trajectory model used in this
program is "analytic" in the sense that it consists of two closed form (conic)
trajectories which are joined at the moon's sphere of influence. ' This feature
permits the "split end-point" trajectory problem to be solved rapidly and also
permits large numbers of moon-to-earth trajectories to be generated and

studied parametrically with ease.

Next, a thorough understanding of moon-to-earth trajectories was gained
by analysis and computation to establish the relationships between lunar

injection parameters, earth atmosphere re-entry parameters, trajectory
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geometry, time of launch, time of flight, etc. The sensitivity of moon-to-earth
trajectories to launch errors (miss coefficient analysis) and midcourse correc-
tions was also investigated. Although this work could, in principle, have been
performed on existing computer programs (such as the STL Encke Program), a
more elaborate and efficient study was possible through use of the specialized
Lunar Return Program. As illustrated in Part I, very good agreement was
obtained between the results from this program and an "exact" (integrating)

program.

In conjunction with the trajectory analysis described above, two moon-to-
earth mission analysis studies were also performed and are discussed in
Part II. These studies covered, in addition to free flight trajectory analysis,

1) A parametric study of powered flight from the lunar
surface (Reference[ l]),

2) An analysis of launch guidance errors, and

3) Monte Carlo simulations of tracking and midcourse
guidance (Reference[3 ).

The two missions considered were a "standard" lunar return, employing all the
sophistication necessary for a manned mission, and a "minimal" lunar return,
applicable, for example, to a sample return from a landed SURVEYOR space-
craft. Subsequent to the mission simulation work reported in Reference[3]
additional work has been done on this problem, using a new noise model for
tracking observations, and a more exact error analysis has been made of the
minimal mission. Thus Part Il is actually a revised version of Reference [3J

and for this reason is somewhat longer and more detailed than the other parts.

The lunar return mission studies show that both of the above missions are
feasible from the point of view of guidance, using either existing equipment or
equipment which is compatible with the present state-of-the-art. For example,

for the standard mission, re-entry conditions can be controlled to an accuracy of

° : o oo _ o
long = 0-07 (4nmi), o, =0.2%(10nmi), og = 0.1
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using two (attitude controlled) midcourse corrections. For the minimal
mission, an accuracy of

= 0.67° o, ., = 0.45°

o-long lat

can be attained using two (spin stabilized) midcourse corrections. (For the
minimal mission, re-entry angle Be is not controlled by midcourse corrections
since it is not a critical parameter.) Velocity requirements for launch and for

midcourse correction were also estimated for both missions.

The same earth-moon model as used for moon-earth trajectories,
employing the moon's sphere of influence, is currently being used to study
circumlunar trajectories. This effort is discussed in Part III and in References
[27] and [30:, . Two basic categories of circumlunar trajectories are under
consideration: free-return, or true circumlunar, and non-free-return, in which
a velocity increment AV is required in the vicinity of the moon to modify the

nominal trajectory and make it return to earth.

Emphasis will be on non-free-return trajectories, of which the free-return
examples will be special cases. The motivation for studying non-free-return
trajectories is that the free-return type is a very restricted class which may
not be compatible with many mission objectives, such as having widest freedom
in choosing day, time of launch, and pericynthion altitude, and being able to
pass over a specified point on the moon's surface. Non-free-return also
includes the case of "aborting™ near the moon an arbitrary lunar return

trajectory.
ORBIT DETERMINATION STUDIES

The term "orbit determination® is used here to mean the processing of
noisy, redundant spacecraft "observations" to obtain (1) an estimate of the
trajectory of the spacecraft and (2) a measure of the accuracy of the estimate,
such as the covariance matrix of the estimate. In all practical methods of
orbit determination, the problem is linearized so that the estimation procedure
is a linear operation on observational "residuals"; the various techniques
differ in the weights assigned to observations and in the resultant covariance

matrix of the estimate.

4
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Work on the statistical theory of orbit determination was conducted in two
phases and is described in Part IV (see References[S] and [6] } In the first
phase, the question of how to handle correlated observations was studied. When
observations are correlated, one is faced with the necessity of choosing among
several statistical estimation techniques to select the method most appropriate
for trajectory applications. This led to a comparative study of least squares
and minimum variance methods. As a result of this study, it was concluded
that the most suitable technique, both from the point of view of computational
simplicity and accuracy, was a particular form of weighted least squares esti-
mation in which the weights assigned to observations are determined not only by
the mean square value of the noise but also by the degree of correlation among

observations.

Having decided in phase one on the character of the estimation technique,
this technique was expanded in phase two to encompass the many special prob-
lems which arise in orbit determination: (1) the handling of a priori data,

(2) the separation of parameters into classes, according to whether or not they
are being estimated, (3) tracking through a midcourse maneuver, and (4) modi-
fying the equations to make them more suitable for spacecraft on-board

computation.

In conjunction with, and in addition to, the above theoretical studies, a new
computer program,? the Tracking Accuracy Prediction Program - (TAPP,
Mod I) was developed, and is discussed in Part V (see Reference[?]. ). This

program was designed not for real time tracking, but as an analytical tool for
predicting the results of real time tracking and guidance of spacecraft. Thus,
for reasons of simplicity and speed, sequences of conics about the principal
bodies in question (earth, moon, sun, planets) were used to compute trajectories
instead of the true solutions to the equations of motion. In all other respects,
however, the program simulates real time tracking operations, and the fact that
"analytic" trajectories are employed should have only a slight effect on the

results the program was designed to yield.

In common with other orbit determination or tracking programs, [ TAPP I
determines the covariance matrix of estimates of orbital parameters for various

types of observational data, data rates, tracking intervals, and observational
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noise models. In addition, however, it has the following features:

(1) It determines the statistical effect on orbit determination of
uncertainties in physical constants” and tracking station
location coordinates, and of biases in various data types.

(2) It simulates tracking "through" a midcourse correction,
assigning an appropriate statistical uncertainty to errors
in the execution of the correction.

TAPP Iis thus particularly well suited to the design and analysis of
advanced space missions and can answer many questions which were previously
extremely difficult to analyze - viz., what are the effects of systematic errors,
interacting with tracking and midcourse guidance, on the final accuracy of a

space mission.

Concurrent with the completion of TAPP I, development has begun on a
more powerful version (TAPP Mod II)in which the basic TAPP I program is
used to drive a Monte Carlo process capable of a complete statistical tracking
and guidance analysis of missions having multiple midcourse and terminal

guidance maneuvers.

*
GM of earth, sun and other planetary bodies, velocity of light, astronomical
unit, etc.
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¢ LUNAR TRAJECTORIES AND GUIDANCE STUDIES

I. MOON-TO-EARTH TRAJECTORIES

A. Introduction

For the purpose of studying moon-to-earth missions, it is desir-
able to be able to generate moon-to-earth trajectories by choosing values

~ of the parameters listed below (see also Figure 1-1):

a) selenographic (lunar surface)} launch site
latitude*

3
b) launch site longitude>
c) day of launch
d) 1lunar powered flight control angle from launch
to lunar burnout, and lunar powered flight time
interval

%k
e) burnout altitude

f) re-entry maneuver downrange angle, and maneu-
ver time from re-entry to touchdown

g) landing site latitude*

h) landing site longitude

i) re-entry flight path a.ngleg}<
j) re-entry altitude

k) total time of flight

It is important to determine (1) the lunar injection conditions and
certain auxiliary trajectory variables (such as trajectory plane inclinations)
which correspond to the above parameters, (2) the geometric constraints
which must exist between all of these variables and parameters, and (3)
the sensitivities of terminal variables on earth to the lunar injection con-

ditions. A special computing program, the Analytic Lunar Return

%
It should be understood that not all of these parameters may be chosen
independently of the others. Asterisks denote a partial set of parameters
which can be specified independently.
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Figure 1-1. Location of Independent Parameters
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Program (ALR)[Z] , was written to facilitate the study of moon-to-earth

trajectories from this point of view. In the following sections we shall

discuss, in order, the characteristics and logical organization of this pro-

gram, and the major characteristics of moon-to-earth trajectories as

determined with the aid of the ALR program, and the accuracy of the

program,

B. The Analytic Lunar Return Program

The ALR Program has the following features:

1)

2)

3)

4)

5)

It is "analytic" in that closed form solutions
(conics) to the equations of motion are used,
yielding a very high computational speed and
making it feasible to perform elaborate para-
metric studies which only an analytic program
would allow with reasonable machine time.

Search loops are provided to solve the "split-
end-point" problem when parameters which are
meaningful to the mission analyst are input to
the program.

When used with the '"r-correction" (see Section D),
the program supplies quite accurate approximate
lunar burnout conditions for subsequent use with

an n-body integration program to determine "exact"
trajectories. To aid in this possibility, the lunar
ephemeris tape used in the analytic program is
the same as that used in STL integrating programs.

The Program may be made a part of other analytic
programs requiring highest speed, such as a Monte
Carlo guidance analysis program [3]. To facilitate
this possibility the Program contains a Sensitivity
Coefficient Routine which takes lunar burnout or
midcourse conditions, introduces incremental
changes in each variable, and determines the re-
sulting perturbations at the earth.

By varying the size of the burnout or midcourse
perturbations, nonlinear effects may be examined.
This ability to simulate accurately nonlinear be-
havior, together with high computational speed,
makes practical a Monte Carlo simulation of mid-
course guidance freed of the necessity for the usual
linearity assumptions.

17




The analytic model upon which this program is based was first
presented by V. A. Egorov in 1956 [32]. In this model, earth-moon space
is divided into two regions such that only the moon's gravitational field is
effective in one region and only the earth's gravitational field is effective
in the remaining region. The dividing surface is defined as the locus of
points at which the ratio between the force with which the earth perturbs
the motion of a third body and the force of attraction of the moon is equal
to the ratio between the perturbing force of the moon and the force of
attraction of the earth. This surface is approximately a sphere whose

center is coincident with the center of the moon and whose radius is

2/5
r =0,87r (2) = 31,000 nautical miles (57,400 km),
s m\M
where rm is the mean earth-moon distance and m/M is the moon-earth

mass ratio.

The problem which the program solves is to find the unique moon-
phase and earth-phase conics which satisfy the input conditions (specified
in the Introduction) and which match in position, velocity and time at the
moon's sphere of influence. Rather than attempt to express orbital
parameters explicitly as functions of input parameters, the computing
technique used is to replace unknown parameters with "trial” values and
iteratively solve the equations of motion until input and interface conditions
are met, within prescribed tolerances. Figure 1-2 illustrates the general
logic of the procedure. This technique has proved quite successful, re-

quiring 4 to 9 iterations to converge.

After the above search is completed, miss coefficients are gen-
erated using the Sensitivity Coefficient Routine. This is a separate sub-
program which employs explicit expressions and no iterations. Itis
possible to use explicit equations here because the split-end-point diffi-

culties which complicate the search routine are no longer present.

The T-correction, described in Section D, is an empirical per-
turbation made at the moon's sphere of influence to compensate for the
moon's perturbing effect on the trajectory during the earth-phase of the

trajectory.
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GENERAL LOGIC

COMPUTE:

FIRST APPROXIMATION
OF EARTH PHASE CONIC;
MASSLESS MOON

COMFUTE:
POSITION, VELOCITY,
TIME
AT MSA
COMPUTE: TesT ¥ ¥
EXIT MOON PHASE CONIC; VELOCITY VARIATION
NO SOLUTION POSITION, TIME AT MSA
AT MSA
NOT [ MET
TEST COMPUTE:
POSITION VARIATION EARTH PHASE CONIC;
AT MSA POSITION, VELOCITY
TIME AT MSA
MET
CALCULATE QUANTITIES EXIT
N LUTION
DESIRED IN PRINTOUT 0 S0

¥* ¥

CALCULATE
VARIATION TRAJECTORIES
USING MiSS COEFF. ROUTINE

‘ EXIT

MSA = MOON'S SPHERE OF ACTION.

THE SUCCESS OF THIS TEST IS REGISTERED, AND IF THE POSITION TEST IS
ALSO SATISFIED, THE PROGRAM EXiTS THE SEARCH LOOP.

Figure 1-2, General Logic Block Diagram

-5
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C. Trajectory Analysis

1. Earth Phase

Since the moon's sphere of influence is only 31,000 nautical
miles in radius, the major part of the trajectory will be the earth-phase
conic. Apogee of this conic will be 'approximately the distance of the moon,
or greater, while perigee will be roughly the radius of the earth, or less.
Thus, the earth-phase conic will be a portion of a highly eccentric ellipse

(e > 0.96), or else be parabolic or hyperbolic.

Since the trajectory consists almost entirely of the earth-
phase conic, this phase may be studied independently of the lunar launch
conditions. / In performing such studies, it was discovered that many pa-
rameters depended primarily on the total time of flight and the distance of

the moon.

During a lunar month, the earth-moon distance will vary by
about 7.5 earth radii. Thus, for fixed flight times, vehicles launched on
those days when the moon is farthest from the earth will have higher
(earth phase) energies than those launched when the moon is closest to
the earth. This observation is born out by Figure 1-3 which plots the re-
entry velocity versus the total time of flight for different earth-moon
distances. The effect of the re-entry flight path angle on the r;-—entry

velocity was found to be negligible.

In a similar manner, it is possible to show that the velocity
and flight path angle at the moon‘s sphere of influence will also depend on
the time of flight and the distance to the moon. These quantities, however,
will also depend upon the re-entry angle; particularly the flight path angle.
The flight path angle at the moon's sphere of influence is shown in Figure 1-4b
for shallow re-entry (this angle approaches 180 degrees for steep re-entry).
The variation of the velocity at the sphere (Figure 1-4a) with the re-entry
angle, on the other hand, is significant but small. The indication that
steeper re-entry angles have lower velocities may be explained by the fact
that these trajectories re-enter on the side of the earth facing the moon,

whereas shallow re-entry trajectories come in on the back side of the earth.
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Re-entry Velocity (Altitude = 400, 000 feet) versus Total
Time of Flight for Various Distances to the Moon
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The steep re-entry trajectories, then, may have a distance as much as
two earth radii less to travel than shallow re-entry trajectories, and
therefore require less energy to accomplish this in the same amount of

time.

Returning to the first observation that the majority of the
lunar return trajectory will consist of the earth-phase conic, it has been
shown for a range of analytic trajectories that the declination and right
ascension of the moon at launch are within 1.5 degrees of that of the ve-
hicle at the transfer point between the earth and moon phases. The reason
for this is that just after lunar burnout, the vehicle very nearly cancels
the angular velocity of the moon causing its angular position with respect
to an inertial earth centered system to remain nearly fixed out to the
transfer point. This fact, and the observation that the in-plane angle be-
tween the transfer point and the re-entry point (angle Ner in Figure 1-5) re-
mains essentially dependent only on the time of flight and the re-entry
angle, permitsustoplotFigure 1-6. This figure will aid in calculating

latitude restrictions on the landing site.

On the basis of these observations, it is possible to define
what may be called a "touchdown cone" as shown in Figure 1-5. This cone

may be generated as follows:

a) For a given total flight time and a given
re-entry flight path angle the in-plane angle,
Ngr Will be fixed and may be determined
from Figure 6. With the arguments given
above, this angle will be essentially the in-
plane angle from the moon to re-entry.

b) ' The re-entry maneuver angle, if nonzero,
may now be added to ng, to produce the total
in-plane angle from the moon to touchdown.

c) With this total in-plane angle fixed, it is
possible to generate all possible earth phase
conics which are launched from a certain
declination of the moon, i.e., on a certain
day, and which have a given total flight time,
re-entry flight path angle and re-entry maneu-
ver angle. These trajectories may be generated
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by rotating the in-plane conic about the
earth-moon line producing the touchdown
cone shown in Figure 1-5a. The two trajec-
tories drawn represent counterclockwise
re-entry (in the direction of earth's rota-
tion) and clockwise re-entry.

It is clear that as re-entry progresses from
shallow to steep angles, the angular radius
of the cone will increase to a maximum of
90 degrees and then decrease, on the moon
side of the earth, down to zero for a recti-
linear trajectory. The allowable declination
for this trajectory will be, as expected,
identical to the declination of the moon at
launch.

One question which can now be akked is: what restrictions
does this process place on allowable landing sites ? Certainly there will
be no restriction on the landing site longitude since any longitude may be
obtained with a given flight time by launching from the moon at the proper
time of day. There are restrictions on the allowable landing site latitudes,
however, and this is showninFigurel-5b. As indicated on this diagram,
the landing site must be within a certain angular distance of the earth-
moon axis as measured from the center of the earth. The maximum al-
lowable latitude will be attained for the trajectory passing over the north
pole whereas the minimum latitude will be for a trajectory passing over
the south pole. These are shown in the figure for 50 and 90 hour flight
times. Simple linear relationships may be obtained from this figure,
giving these extremes of latitude as a function of the total in-plane angle
and the declination of the moon.. These are presented graphically in

-
Figure 1-7. Themanner in which this graph may be used is first, to de-
cide what the total in-plane angle is, based on the total time of flight,

the re-entry flight path angle, and the re-entry maneuver angle (with the

- aid of Figure 1-6, and second, to determine the declination of the moon

on the day of launch. The allowable touchdown latitudes will then lie with-
in the parallelogram for the given lunar declination and total in-plane

angle. -
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This graph may also be used to answer the following question:
for a given landing site latitude, total time of flight and re-entry flight path
and maneuver angles, what are the allowable declinations of the moon
(which is equivalent to days of the lunar month) for which a trajectory is
possible? This question is easily answered by determining what lunar
declination parallelograms will cause the desired touchdown latitude to lie

within them for a fixed total in-plane angle.
The following two examples are given for illustration.
a) Simple lunar sample return mission:

Total time of flight = 70 hours
Re-entry flight path angle = 175 degrees

Re-entry maneuver angle = 0 degrees

From Figure 1-6, the moon-to-entry in-plane angle will be
abhout 10 degrees. This will also be the moon-to-touchdown angle. If the
desired landing site latitude is 20 degrees, then from Figure 1-7, the allow-

able declinations of the moon will be between 10 degrees to 30 degrees.
b) Apollo manned return mission:

Total time of flight = 70 hours
Re-entry flight path angle = 96 degrees

Re-entry maneuver angle = 40 degrees

From Figure 1-6, moon-to-re-entry in-plane angle will be
about 160 degrees. Adding on the maneuver angle will make the total
moon-to-touchdown angle equal to 200 degrees. - (This angle will produce

the same cone as one whose angle is 360 degrees - 200 degrees = 160

..
‘degrees). Again if the desired landing site latitude is 20 degrees then,

from Figure 1-7, the allowable declinations of the moon will lie between

0O degrees and -30 degrees. For a particular lunar period it is possible,

by use of the foregoing graphs, to plot latitude restriction curves such as
shown in Figure 1-8. The time period in this case is the month of December
in 1963. For a given launch date (which implies a given declination of the

moon) and a given time of flight, the allowable re-entry latitudes shall lie
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between the two limiting curves. If the re-entry maneuver angle is taken
into account, similar graphs may be drawn presenting limitations on landing

latitudes.

The reduction of the number of significant variables that enter
into the calculation of the earth-phase conic also makes it possible to
graphically determine some of the angular quantities involved. For example
the declinations of the moon and landing site and the total in-plane angles
between these points will determine the orientation of the earth-phase conic.
Figures 1-9 and 1-10 present the inclination of the conic and the azimuth at
touchdown respectively for specific total in-plane angles. Graphs for a
complete range of in-plane angles have been drawn, however, only these are
presented for illustrative purposes. For the Standard Return mission
presented in Part II where the declination of the moon is -10 degrees,
Figures 1-9 and 1-10 indicate the incliration and azimuth to be about 32 and

62 degrees, respectively, /

2. Moon Phase

The earth-phase analysis has been based primarily on the
fact that many independent parameters at the moon have little affect on
the earth-phase conic. To a certain extent, the reverse is also true.
Bevore presenting some of the quantitative results generated by the Ana-
lytic Program, it is possible to deduce some qualitative properties of the
moon-phase by visualizing the class of all earth-phase trajectories for a
given flight time and a given re-entry angle. As deduced in the earth-
phase analysis, this may be done without involving the shape or orientation
of the moon-phase conic. Figure 1-11 shows such a class of trajectories.
In this ﬁglfre, no positions will be designated on the sphere of influence.
Instead, only the velocity vector at the sphere, ;s’ projected from the
center of the moon, will be drawn. As will be seen later, the directions
of these velocity vectors will represent very nearly the direction of the

hyperbolic asymptote of the moon-phase conic.
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Continuing with Figure 1-11a, the earth-phaseconic has been
drawn with respect to inertial space where u_ and u A are the velocities of
the vehicle and the moon respectively at the sphere relative to the earth.
For a fixed day of launch, flight time, and re-entry flight path and maneu-
ver angles, it is possible to draw the re-entry cone indicated. Shown on
this figure are trajectories which approach the earth in extreme clockwise
and counterclockwise manners and over the north and south poles. All
other trajectories will form a surface passing through these four. If as
assumed above, the time of flight and the re-entry flight path angle are
fixed then, as shown in the earth-phase analysis, the velocity magnitude
u_ and the flight path angle Bs will be constant. Also, since the vector l_lm
is fixed and the velocity

'I_J.s = Trs + ‘(_lm s
the class of earth-phase velocity vectors may be drawn as radii of a sphere
whose radius is u and whose center is located at the tip of the ‘ﬁm vector.
This is called the spherical boundary in Figure 1-11b where the velocity
vector additions for extreme clockwise and counterclockwise re-entry

are shown,

On visualizing the class of all possible vector additions, it is
seen that the extreme clockwise re-entry will generate the maximum pos-

sible moon-phase velocity Trs and the extreme counterclockwise re-entry

- will generate the minimum possible velocity Trs. Thus, it has been shown

that although the energy of the vehicle for various trajectories may be

identical in the earth-phase, the energy in the moon-phase will differ.

~ Analysis of extreme clockwise and counterclockwise re-entry trajectories

computed by the analytic program indicates that the difference may be con-
siderable. An attempt was made to find the bounds on the energy and this
is shown in Figure 1-12. Here the lunar burnout velocity has been plotted
against the total time of flight for various distances to the moon. To ob-
tain extreme trajectories a re-entry flight path angle of 96 degrees was

chosen for all cases.
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By means of the vis-viva integral, it is possible to convert
these velocities to equivalent velocities v at the sphere of action. The
results are shown in Figure 1-11. Alsoplottedhere are the hyperbolic ex-
cess velocities, and these are within 100 to 300 fps of the velocities Ve
It can be shown that the direction of the hyperbolic asymptote is within

0.1 degree.(order of magnitude) of the direction of Ve

Under the basic assumptions concerning the gravitational
model, the moon-phase conic may be considered as stationary in inertial
space (for an observer on the moon) from the moment that it leaves its
surface. Therefore, although the moon will rotate in this system, the
direction of the velocity vector Trs may be found with respect to the surface
of the moon at launch. This angle, measured from the earth-moon line,
is presented in Figure 1-14, Itis called earth-moon-probe angle (EMP) and
will depend upon the same set of parameters on which the magnitude of Trs
depends. Again the data was taken from analytic runs representing ex-
treme re-entry conditions at the earth (ﬁr = 96°) and for various distances
to the moon. It is seen from this graph that this angle varies considerably
in going from counterclockwise to clockwise re-entry. Also, as expected
from the velocity vector diagram shown in Figure 1-11b, the angle EMP is
greater for clockwise re-entry than for counterclockwise re-entry. For
example, for a 60 hour total flight time and a mean distance to the moon
the angle will vary between 40 degrees (ccw re-entry) and 49 degrees

(cw re-entry).

It is well known that except for librations which amount to
about 7.5 degrees in the east-west direction and about 6.5 degrees in the
north- south direction, the face of the moon directed towards the earth
remains relatively fixed. The classical selenographic coordinates set up
on the moon are such that the surface's "mean" position on the earth-moon
line represents zero latitude and longitude. Also, the moon's axis of ro-
tation lies very nearly perpendicular to its plane of motion around the
earth. Thus, its equatorial plane will nearly contain the moon's velocity
vector ﬁm. This implies that the vector T/S will be: very close to the

selenographic equator and in fact upon observing the results of many
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analytic runs, it does consistently come within 10 degrees of the moon's
equator. Since this angle is of the same order of magnitude as the libra-
tions of the moon, and since the librations will be ignored in the qualitative
discussion that follows, it will be assumed that the vector Vs does in fact

#
lie in the moon's equator.

We shall consider now a graphical method which may be used
to solve approximately for some of the remaining parameters used in the
moon phase geometry. This approach has the dual purpose of providing a
method for the practical determination of some of the important moon-to-
earth parameters while at the same time indicating the parametric rela-
tionships involved in the moon phase. The data used in generating these
graphs have been obtained in some cases from the analytic program and

in others from solutions of simple spherical tridangles.

a) First, it is assumed that all the parameters required to
solve the earth phase have been decided upon and that the analysis has
progressed to the point where the magnitude and direction of the -‘;s vector
have been; with the EMP angle representing the direction of this vector

relative to the selenographic coordinate system.

b) Then, referringtoFigure l-15,specifying the selenographic
latitude and longitude (;p.o and )\0 respectively) will determine the orienta-
tion of the moon phase conic since it must pass through the Ve vector and
the launch site vector. The right spherical triangle shown in this figure
with the sides p_ and ()»O - EMP)** may then be solved for the inclination
of the moon phase trajectory, the launch azimuth and the in-plane angle
from launch to the ;s vector. The inclination is given in Figure 1-16:versus

the longitude minus the EMP angle for various launch site latitudes.

c) The launch azimuth may be found from Figure 1-17 which
is also plotted versus the longitude minus the EMP angle and for various

launch site latitudes.

)
It should be noted that these simplifying assumptions areé not made in
the Analytic Lunar Return Program, but were only made in the quali-

tative graphical analysis discussed here and illustrated in Figures 1-16
to 1-20. ’

ok
Remember that longitudes measured west of (0, 0) are negative.
-25-
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EARTH

Figure 1-15. Moon Phase Geometry

d) The in-plane angle from the launch site to the vector Vs
(which also indicates the direction of the hyperbolic asymptote) is com-
posed of the sum of the powered flight angle and the in-plane burnout to
asymptote angle; indicated by T‘pf + -ﬁbs + ES in Figure 1-15. This angle is
presented in Figure 1-18 andalso plotted versus the longitude minus the

EMP angle for various launch site latitudes.

e) The partial in-plane angle ?‘bs + Bs may now be used to
solve for the burnout flight path angle [Sb. The moon phase conic will be
completely determined if the burnout parameters of altitude, velocity and
flight path angle are specified. Then it is possible to solve for the angle

Fbs +Es given Rs, the radius of the sphere of influence. These param-

‘eters have been plotted in Figure 1-19, for a fixed burnoutaltitude of 100, 000

feet and may be used to solve for Bb'
To illustrate this procedure, consider the following example:

Total time of flight = 90 hours

Distance of the moon at launch = 1,33 x 1010

feet (max)
Type of re-entry = counterclockwise

Launch site latitude = 5 degrees

Launch site longitude = 25 degrees

Burnout altitude = 100,000 feet

Powered flight angle = 3 degrees

_26-
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With the information and the foregoing graphs, the following information

may be obtained.

Lunar burnout velocity = 8250 fps (Figure 1-12)

Velocity at the sphere of action = 3200 fps (Figure 1-13)
Hyperbolic excess velocity = 2900 fps (Figure 1-13)
Earth-moon-probe (EMP) angle = 61 degrees (Figure 1-14)
Longitude - EMP angle = 25 - 61 = -36 degrees

Trajectory inclination = 9 degrees (Figure 1-16)

Launch azimuth = 95 degrees (Figure 1-17)

Launch site - asymptote in-plane angle = 37 degrees (Figure 1-18)
Burnout - asymptote in-plane angle = 37 - 3 = 34 degrees

Burnout flight path angle = 23 degrees (Figure 1-19)

Since it was necessary to specify the day of the month on which the vehicle
was launched (except that it must be on a day when the distances to the
moon specified above is satisfied) the determination of the moon-phase by
this method is independent of the declination of the moon. It has already
been made clear that the moon-phase is essentially independent of the

terminal conditions at the earth (except for cw or ccw re-entry).

Aside from using these graphs to obtain approximate values
of moon-phase parameters in specific situations, it is possible to generate
restriction curves as has been done in the earth-phase analysis. Return-
ing to Figure 1-15, for example, itis clear that the in-plane angle ﬁbs + Es
is dependent only on the velocity magnitude Ve and the burnout flight path
angle Bb" Thus, for a given day of launch and time of flight, and for
specific earth phase conditions, the selenographic position and velocity
of -‘;s will remain essentially fixed. The in-plane angle ;bs + Bb will then

be only a function of Eb" In this situation it is possible to draw constant

Eb contour curves on the surface of the moon as shown in Figure 1-20 where

each point on a given contour is displaced by the corresponding Fbs +Bs

angle from the ;s vector.

Such contours have been generated with the analytic program
by running trajectories with different launch sites but having all remaining

input parameters equivalent. The results of these runs are presented in
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Figure 1-20. Constant Burnout Flight Path Angle Contours
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Figure 1-21 which plots, by interpolation, the constant Eb(gﬁ) and constant
azimuth curves. These curves are not everywhere orthogonal. The re-
stricted region shown here and in Figure 1-20 simply implies that it is im-
possible to launch a direct' ascent moon-to-earth flight from these sites,

for the earth-phase parameters considered, without first passing through

the pericynthion of the moon-phase conic.

3. Sensitivity Coefficient Analysis

The Sensitivity Coefficient Routine provides a method of com-
puting quite accurate sensitivity coefficients at a very rapid rate (0.1 sec
per perturbed trajectory) and therefore makes it possible to generate ex-
tensive burnout or midcourse sensitivity data. This data may then be
used to show the dependence of sensitivity coefficients on launch site location,
energy, time of flight, etc., and the results may be examined for general
trends. However, the most meangingful results will be obtained when a
specific launch guidance system (i.e., set of burnout errors) is considered,
since it is the resultant errors at re-entry or, ultimately, the resulting
midcourse correction requirements which are significant, rather than either
the burnout errors produced by the guidance system or the sensitivity

coefficients. (See Part II).

Figures 1-22, 1-23 and 1-24 are presented to indicate the kind
of data that may be generated. Here, the variations in re-entry latitude,
longitude, ﬂight‘path angle and time are found with respect to the lunar
burnout velocity, flight path angle and azimuth. An analysis of these graphs,

and others, may be found in [5].

D. Program Accuracy

1. Preliminary Study

The usefulness of any analytic model depends directly upon
the accuracy with which it yields the true conditions which are being sim-
ulated. For this reason, it was necessary to carefully analyze a broad
range of results obtained from the model and compare them with exact
results. In addition, through study of the behavior of the deviations of the

approximate from the true results, it was possible to find a method by which

-33- 46
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the basic model may be made to yield greater accuracy. This section
presents first, a comparison of the results from the original model to
those from the exact model; second, the arguments which led to an

empirical correction scheme; and finally, a comparison of the true re-

sults with those from the corrected model.

The preliminary results obtained from the original model
are shown in Table 1. The "exact program" mentioned here solves for
the exact trajectory (which includes earth, sun, moon, vehicle and oblate-
ness perturbations) as a function of time by numerically integrating the
second order differential equations of motion using Encke's method.
Several trends may be noted. First, faster flight times result in greater
overall accuracy.. This may be expected since the size of the perturba-
tions on the trajectory will be directly proportional to the duration of
time in which they act. The second noticable trend is that the greater
the re-entry angle (steeper) the more accurate the results. This, of
course, is due to the nonlinear effect of the trajectories intersecting the
spherical earth. It is expected that the same perturbation acting on a
trajectory having a shallow re-entry as acting on one having a steep re-
entry may cause the former to miss the earth completely while indicating
fair accuracy for the latter. Also, if one looks carefully at the impé.ct
longitudes obtained from the exact program, he will notice that in all
cases the actual re-entry point is east of the desired re-entry point. A
later examination into the nature of the lunar perturbation will explain
why this is so. Next, although not enough cases are presented in Table 1
to indicate this, the accuracy is dependent on the lunar date of launch and,
in particular, on the distance of the moon from earth. Finally, the one
parameter which indicates best results for the cases shown in Table 1 is

the total flight time.

To improve the accuracy of the basic model, it was first
necessary to determine the spéciﬁc source and size of the perturbations
not accounted for in the analytic model and then attempt a correction.
The procedure followed in doing this was to run sample trajectories on

the n-body program with and without the sun and oblateness, and with

-383 1
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and without the moon and earth when the vehicle was in the opposing phase.
In this manner, it was found that the major part of the perturbations is
due to the earth-moon system itself, and, in particular, to the effect of

the moon on the earth-phase trajectory.

2. Correction Scheme

After considering several alternatives, it was decided that
the best approach would be to correct empirically for the bias type error
that existed in all of the runs made with the analytic program. The nature
of this bias may be seen more clearly with the aid of Figurel-25a. As indi-
cated above, the principal perturbation is that due to the moon on the earth-
phase trajectory; but, as shown in the figure, the moon at this time has
rotated in its orbit and will always lie to the east of the trajectory (as seen
from the earth). The bias, then, is simply due to the moon pulling the tra-
jectory eastward. A simple method of correcting this is showninFigure 1-25b.
The earth-phase velocity is first projected into the earth-moon orbit plane
and this projection rotated through the empirical angle r. Thus, only that
component of T which lies in (or parallel to) the moon's orbit plane is ro-
tated. (SeeFigure 1-25b). This rotation to counteract the undirectional
bias will always be counterclockwise. The justification for this correction
is the fact that the perturbational effects on the earth-phase trajectory will
be primarily in the earth-moon plane and, more strongly, the fact that the

correction does yield satisfactory results.

3. Evaluation of Tau

Investigations were next carried out to determine, first, the
trajectory parameters on which the correction angle v depends and second,
an empirical expression which approximates this dependence. The pro-
cedure used in carrying out these investigations was first to allow T to
be an independent input into the analytic program. The lunar burnout
conditions which the program calculated for various values of + were
then fed into the exact program and the results tabulated. Those trajec-
tories whose re-entry conditions, as obtained from the exact program,
most closely correspond to the desired entry conditions were considered
to have used the optimum correction angle. This study led to the con-

clusion that v~ was a function primarily of flight time and the earth-moon
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Figure 1-25. Perturbation Correction Scheme
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The expression for optimum T with respect to the time of
flight was then determined for the average earth-moon distance. The
results are shown graphically in Figure 26a. Also shown in this graph
is the variation of T with the time of flight for clockwise re-entry. The
results in this case were sufficiently different as to warrant a separate
study. Following the study for clockwise and counterclockwise re-entry,
it was found that both sets of empirical data could be easily approximated

by quadratic expressions.

Next, effects on T of the distance to the moon was studied
for trajectories having a total flight time of 90 hours. The results in
{his case, shownin Figure 1-26b, indicates alinear dependence of 'T on the
earth-moon distance. Again separate studies were required for clockwise
and counterclockwise re-entry. The product of the quadratic and linear
expressions resulted in the following expressions for the evaluation of

optimum T:

For counterclockwise re-entry and time of flight greater
than 45 hours,

T=(5.5246 - 3.6052 x 10”7 x_)
m

69.881 - 0.69055x10°%°T .+1.2639x10°°T .2)
mi mil

For clockwise re-entry and time of flight greater than
35 hours,

T=(4.7957 - 3.0245 x 1077 x)

2

(3. 1834 - 0.28483 x 10~
mi

T .+ 0.69247 x 10'6 T ?‘)
mi

-

where x = distance to the moon in feet, and Tn{i = time of flight in

~ =

minutes. The value of T is taken as zero for flight times shorter than

these.
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4, Final Accuracy

Incorporating the expressions for v developed in the last
paragraph into the analytic program yields the results shown in Table 2
for a few sample cases. As expected, the results compare most favor-
ably with the exact integration program when the time of flight is the
shortest and when the re-entry angle is the steepest and compare the
least favorably for long flight times and shallow re-entry. The adjust-
ment required in the burnout conditions of the analytic program to pro-
duce the desired conditions on an "exact" program will be of the order of
a few tenths of a degree in B and A or a few fps in velocity. This adjust-
ment may be made by incorporating a linear search routine in the exact

program.

The final comparison of results that may be made with the
exact program are the sensitivity coefficients obtainable from the Sensi-
tivity Coefficient Routine. Table 3 presents these results for two cases;
50 and 90 hour times of flight. The results were obtained from the exact
program in exactly the same manner as from the analytic program; i.e.,
each burnout parameter was varied independently by the increment shown
and the trajectory was then integrated to re-entry. The differences be-
tween the resulting terminal values and the unperturbed nominal values

are those shown in the tables.

97
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Table 1-3. Sensitivity Coefficient Comparison Between the
Analytic and Exact Programs

Total Time of Flight = 50 Hours
Re-entry Flight Path Angle = 163 Degrees

Increments®
Terminal Ar VAN A Av JaYs) AA
Parameters (50,000 ft) (1 deg) (1 deg) (50 fps) (1 deg) (1 deg)
Re-entry Time -21.1%4 19.9 -0.065 -35.2 28.0 0.11
(-21.3)** ( 20.5) (-0.300) (-35.1) ( 28.8) ( 0.30)
Latitude -0.051 3.33 1.41 0. 389 2.69 -15.21
(0.003) ( 3.20) ( 1.24) (0.451) ( 2.52) (-15.1)
Longitude 4,72 -20.2 0.692 4.93 -28.1 -3.52
( 4.50) (-19.9) (0.735) ( 4.56) (-27.8) -3.25
Re-entry Angle 0.291 5.81 -0.49 1.75 8.03 1.59
(0.386) ( 5.70) (-0.56) ( 1.89) ( 7.90) ( 1.50)
Total Time of Flight = 90 Hours
Re-entry Flight Path Angle = 169 Degrees
Increments
Terminal Ar AN Ap Av AB AA

Parameters (50,000 ft) (1 deg) (1 deg) (50 fps) (1 deg) (1 deg)
Re-entry Time -48.4 68.4 -3.6 71.0 100.2 -6.67
(-44.5) ( 71.9) ( -4.3) (-65.0) (103.9) ( 06.0)
Latitude 1.24 1.13 7.98 1.34 -1.00 -7.05
(1.17) ( 1.00) ( 7.86) ( 1.22) (-1.13) (-7.16)
Longitude -1.72 -20.8 3.29 -4.67 -30.8 -0.55
(-2.79) (-21.1) (3.17) (-6.50) (-30.8) ( 0.68)
Re-entry Angle 3.82 1.05 -3.14 4.18 2.43 1.58
( 3.95) { 0.90) (-2.96) ( 4.30) ( 2.13) ( 1.50)

*
The values in the tables represent actual variations in the terminal
parameters and have not been divided by the indicated increments.

Quantities in parentheses are from the Exact Program.
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II. LUNAR RETURN MISSION ANALYSIS

A. Introduction and Summary of Conclusions

This section examines the trajectory and guidance problems involved
in returning a spacecraft from the lunar surface to earth. Two generalized
missions are considered in order to displa'y the guidance requirements,
tradeoffs, and problem areas in two extreme cases of current interest:

a) The return of a spacecraft having all sophistication

necessary to achieve manned re-entry conditions
(the standard mission),

b) A minimal, sample return mission using a small
(~250 1b spin-stabilized slant-launched vehicle
with or without midcourse correction (the minimal
mission).
In both missions, midcourse guidance is assumed to be under earth-based
control; however, the method of analysis and many of the results for the
standard mission apply equally well when the midcourse guidance is under

spacecraft control.

Sections B and C discuss the power flight, injection guidance, transit
trajectory, midcourse velocity (fuel) requirement, and final re-entry errors
for the two missions. For the standard mission, an autopilot-accelerometer
cutoff launch guidance system and a present state-of-the-art inertial guidance
system are compared on the basis of re-entry dispersion and midcourse fuel
requirement. The relative contributions of the launch guidance errors, track-
ing errors, and midcourse execution errors are shown. Matrices are included
relating each independent launch source error directly to re-entry errors so
that the effect of changes in the assumed source errors may be easily seen.
For the minimal mission, a comparison is made of accelerometer cutoff and
fuel depletion launches and of the re-entry dispersions with and without a mid-
course guidance system. Section D illustrates the tracking accuracy attainable

from DSIF range rate and angular data for moon-to-earth missions.

For the particular magnitudes of error sources employed in Sections

B and C, the following conclusions may be drawn from the study results.
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1. Standard Mission

a) Both the autopilot and inertial systems simulated provide
accuracy for manned re-entry when used with two midcourse corrections.
Typical final re-entry dispersions are (inertial launch guidance, 90 hour
flight):

= 0.2° (10 n mi), o = 0.1°

- o 3
o = 0.07 (4 n m1), re-entry angle

Lat O-Long

(For comparison, a typical manned capsule with an L./D = 0.5 should allow
reaching a landing site anywhere within a re-entry footprint 800 nautical
miles in width and extending from a point 1500 nautical miles from the sub-
re-entry point to a point 3500 nautical miles from re-entry. A re-entry flight

path angle spread of 3 degrees can be tolerated, full corridor width.)

b) Compared with an allowable 3 degree re-entry angle corridor

width (+1.5 degrees):
1) Neither guidance system will suffice uncorrected,

2) Both systems are_very accurate after two correc-
tions [~ 0. 1° (10')]

c) The uncorrected miss at re-entry for the inertially guided
flight is almost completely caused by launch site uncertainty and initial refer-
ence direction errors. These sources(whose assumed dispersions were: lunar
latitude of site 0.05° (10), lunar longitude of site 0. 05° (1o), altitude 1000 ft (10),

azimuth direction 0. 25° (10)) alone produce re-entry errors on a 50-hour flight of:

12.4° = 1.37°, & - 5.8°

U-Long » Lat re-entry angle

d) Tracking based on DSIF range rate and angular data alone
(0'1"{ = 0.5 fps, Tp = 0p = 0. 20) using a data rate of one observation set per
minute is sufficient to allow the final re-entry accuracy quoted in a) above.

e) Employing two midcourse corrections, degradations of a
factor of 10 in velocity execution accuracy or a factor of 5 in angular orienta-
tion accuracy over values typical of present day inertial platform accuracies

cause changes of less than 35 percent in re-entry accuracy.

-48-

61




| o= o» om oo o om o0 o» o2 o0 0 om em o= o8 on Sm @8 om

f) The autopilot-controlled flights studied required 2 to 5 times
as large a midcourse velocity increment as comparable inertially guided flights.
The total midcourse velocity increments required (68 percent probability level)

for the two systems and for two flight times are:

50 hr Inertially Guided 38 fps 90 hr Inertially Guided 25 1ps
50 hr Autopilot 72 fps 90 hr Autopilot 123 fps

2. Minimal Mission

a) Return trajectories originating near the landing region of a
66 -hour earth-to-moon flight were studied as a function of flight time and re-
entry angle. The smallest uncorrected dispersion was obtained for a fast
(50 hr) trajectory having a steep re-entry angle (80 degrees to the horizontal).
The uncorrected re-entry 40 percent error ellipse for this trajectory, with

powered flight terminated by fuel depletion, has the parameters:
semi-major axis 7.95°, semi-minor axis 3.86°

b) The use of an accelerometer cutoff system is only weakly
effective in reducing re-entry misses because of the dominant re-entry
errors produced by the initial pointing and spin-up errors in elevation and

azimuth (assumed 0. 25° lo).

c) The use of two spin-stabilized midcourse corrections of
modest execution accuracy and a very simple correction logic is highly
effective in reducing the re-entry miss. For a typical 90-hour trajectory
(having a larger uncorrected miss than the 50-hour trajectory just discussed)

the dispersion in re-entry after correction is

0.67°, Oy T 0. 45°

0-Long
The standard deviations of the two velocity corrections for this trajectory are
o, = 179 fps, o, = 207 fps (correlation coeff = 0.997).
1 2
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d) Tracking based on DSIF range rate and angular data alone
(O-I.K = 0.5 ips, Tp =0 = 0.20), using a data rate of one set per 10 minutes,

is sufficient to allow the above re-entry accuracy.

B. The Standard Mission

1. Mission Description

The mission discussed here will be termed "standard" in the
sense that the payload weight is assumed to be large enough to permit any
guidance and control equipment to be utilized which is necessary or desirable

to insure re-entry conditions suitable for manned flight.

In particular, the mission is characterized by the following
features:

a) The lunar powered flight will be performed under either
autopilot control or control of an inertial guidance system.

b) The spacecraft is fully attitude controllable at all times.
Midcourse corrections may be made in arbitrary direc-
tions under attitude controlled conditions.

c) The re-entry flight path angle will be held to 96 degrees
(i.e., 6 degree re-entry angle with the horizontal) with
close tolerances compatible with manned re-entry con-
ditions employing a re-entry L./D as small as 0.5.

Figure 2-1 shows a schematic diagram of the mission. The
powered flight consists typically of a vertical launch, a kickover in the
pitch plane if required by final flight path angle, and a constant pitch rate
profile, all under control of an autopilot or inertial guidance system. The
free flight trajectory is tracked by the DSIF, using range rate, elevation,
and azimuth data. A midcourse correction is performed by radio command,
based on the results of tracking. This maneuver is designed to correct three
components of miss at re-entry -- longitude, latitude, and flight path angle.
A second midcourse correction, based on additional tracking data, is made
24 to 48 hours later as a vernier on the first, In the following sections,

these phases will be discussed in detail.
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Powered Flight

N | DSIF

Re-entry

Figure 2-1. Schematic Diagram of the Standard Mission.

2. Transit Trajectory

The return trajectory may be specified by choosing desired values

of the following variables:

Selenographic latitude of lunar launch site

Selenographic longitude of launch site

Return flight time

Re-entry latitude

Re -entry longitude

Re-entry angle

Launch date (time of lunar month)

Earth approach direction (i.e., clockwise, or
counterclockwise).

From these variables the required injection conditions at the end
of the lunar powered flight may be computed. Using the Analytic Lunar Return
Program described in Part I, approximate lunar injection conditions were
computed for a number of trajectories having different launch site locations
and flight times. These conditions were then adjusted slightly to yield the
desired re-entry conditions using an integrating (Encke) program. The

guidance requirements for two of the trajectories were considered in detail.

Table 2-1 lists the nominal injection and re-entry conditions for
trajectories P-3 and P-4. Launch occurs on December 17, 1963 (lunar decli-

nation ~ -23 degrees) from a point near the earth-moon line at approximately
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7°W, 5°N. After a flight time of 50 or 90 hours, re-entry occurs at approxi-
mately 30°N latitude with a re-entry angle of 6 degrees with the horizontal at
an altitude of 400,000 feet. Figures 2-2 and 2-3 show the P-4 transit trajectory

projected on the equatorial plane and on a plane perpendicular to the equator.

Table 2-1. Injection and Re-entry Conditions for Trajectories P-3 and P-4

Injection
Liftoff time (min after 0% GMT) 180.53 705. 32
Selenocentric radius, ro(ft) 5,733,000 5,733,000
Selenographic latitude, po(deg) 5.14 5.87
Selenographic longitude, ) 0(deg) -6.98 -7.05
Inertial Velocity (moon frame), vV, (fps) 9546.5 8270.3
Flight path angle (from lunar vertical), ﬁo(deg) 24.68 45.21
Selenographic azimuth of Vo’ Ao(deg) 88. 69 79. 43

Re-entry
Flight time, t{hr) 50.23 90. 45.
Latitude of re-entry point, lati(deg) 29.98 29.58
Longitude of re-entry point, long.{deg) -99.27 -99. 26
Re-entry flight path angle, B,(deg) 95.83 96.00

3. Powered Flight and Injection Guidance

The powered flight sequence consists of the following steps:

a) A set of reference directions in space is established on
radio command (or crew control} through one or more
astronomical sightings and an accelerometer or pendulum
determination of the vertical. In the case of the inertial
launch guidance system, these measurements establish
the inertial platform reference.

b) Guidance constants or autopilot settings are transmitted
from earth to the spacecraft computer.
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Figure 2-2. Trajectory P-4, Equatoriél Plane View
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¢} On earth command (or crew command) liftoff occurs.
A launch window may be mechanized by varying the
burnout conditions as a function of liftoff time, as with
direct-ascent space launches from earth.

d) Following a 5-second vertical rise, and kickover if
required by the final flight path angle, the spacecraft
follows a constant pitch rate turn to main engine
burnout.

e) Main engine burnout is followed by a liquid propellant
vernier phase terminated by accelerometer command.

The launch vehicle was assumed to be a single stage vehicle with
a specific impulse of 300 seconds. This Isp is representative of solid propel-
lants which will be available in the near future or of a storable liquid propellant.
A liftoff thrust-to-earth weight ratio of 4 was chosen. This value is sufficiently
large to avoid excessive gravity losses, while not imposing a maximum accel-
eration of more than 11 earth g's. The constant pitch rate profile provides
flexibility in being able to attain any burnout flight path angle required by the
transit trajectory, including a launch into a lunar parking orbit. Lunar
powered flight information is given in Reference[6] for other Isp's, thrust-to-
weight ratios, and pitch profiles. Figure 2-4 shows the time history of the
principal powered flight variables for P-4. Pitch rates of 1.045 deg/sec
(P-3) and 2.018 deg/sec (P-4} were used to produce the proper flight path
angle at thrust termination. As in earth-to-moon flights, the energy at
injection is critical rather than particular values of velocity and altitude.
Thus, in simulating the powered flight profiles for P-3 and P-4, cutoff was
chosen to produce an injection energy equivalent to the T, and Vo values
given in Table 2-1. The resulting lunar injection altitudes were 183, 800 feet
for P-3 and 145,500 feet for P-4.

The injection errors at the end of powered flight are composed
of errors produced during guidance plus errors due to the uncertainty in the
knowledge of the absolute location of the launch site and in establishing the

initial iaunch reference directions. These latter errors were assumed to be:

Clat = U-Long = 0.05 deg, T Altitude 1000 ft
Tplane of trajectory (launch azimuth error) = 0.25 deg
~55-
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A covariance matrix of injection errors resulting from the above sources and

from a complete simulation of the autopilot or inertial guidance system was

obtained for each trajectory using the methods outlined in Reference [6]

We shall discuss the error analysis of the two launch guidance methods in turn.

a. Autopilot Control

The following error sources were considered for the powered

flight under autopilot control with integrating axial accelerometer cutoff in addi-

tion to the launch site and reference errors:

Liftoff weight, WO {percent)
Thrust, T (percent)
Specific Impulse, Isp (percent)
Pitch rate, ¢ (deg/sec)
Accelerometer scale {percent)

Accelerometer bias {earth g's)

Table 2-2 presents the following error analysis information

for trajectories P-3 and P-4 under autopilot control:

1)

2)

3)

4)

Assumed values of the standard deviation of all
independent error sources.

The standard deviation in re-entry latitude, longitude,
and angle resuiting from each of these independent
source errors acting separately {i.e., source to re-
entry "miss coefficients" scaled by a l¢ source error).

Variances and covariances of re-entry variables
resuiting from each source.

The re-entry variances and covariances for the
total launch system. Since the source errors
are independent, the total variances (and co-
variances) are simply the sums of the variances
{and covariances) contributed by each source.
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The information is grouped in the table as shown schematically:

\,

N
Source Scaled source to Re-entry
standard re-entry miss variances and covariances
deviations coefficients due to each source

N

\ v /

7
e —

Total re-entry variances
and covariances

From this table the relative contribution of each error source to the final
miss at re-entry can be seen. In addition the effect of a change in the
magnitude of any source error can be readily estimated by scaling the vari-
ances and covariances due to the source by the square of the new source
standard deviation. Table 2-3 lists the miss coefficients relating injection

errors to re-entry errors for P-3 and P-4, used in producing Table 2-2.

b. Inertial Guidance

The inertial guidance errors were computed in the following
way. Open loop powered flight profiles for trajectories P-3 and P-4 were
entered into an STL inertial guidance error analysis program. From the
profiles, the contributions to the injection covariance matrix of 45 independent
error sources were computed. The resulting injection covariance matrix for
the complete system was then combined with the contributions of the launch
site and reference direction error and the miss coefficients of Table 2-3
(using the method described in Reference [1] ) to produce a re-entry covari-
ance matrix. The magnitudes of the source errors used are typical of a present
state -of-the-art inertial guidance system. The final re-entry covariance matrices

for P-3 and P-4 under inertial guidance are shown in Table 2-4.
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Table 2-3. Injection Miss Coefficients
Injection
Variation Ar AN Ap AV AB AA
o o] (o} (o) (o] (o]
Re-entry (ft) (deg) (deg) (fps) (deg) (deg)
Variation

Trajectory P-3 (50 hr)

A (deg) 0.272(10°3) 80.5 -26.5 0.60 104 17.1
ALong (deg) -0.462(107%)  -175.0  55.1 -1.10  -226  -35.7
ALat (deg) 0.081{103) 24.4 4.0 0.18 31 2.7
At (min) -0.447(107%)  -24.7 17.2 -0.84  -32 -10.7

6 . * -6
Ab,(10° ft) -38.0(10"%  -12.4  2.33 -0.086 -15.9 -1.58
6 . % -6

Ab,4(10° ft) 6.9(10°°)  -0.35  6.29 0.012 -0.70 -3.81
Trajectory P-4 (90 hr)

AB,(deg) 0.575(10°%)  24.2  -4.69 0.960  39.3  23.3
ALong (deg) -0.131(107%  -50.5  11.1  -2.18 -82.0 -51.9
ALat (deg) 0.642(10%)  13.9  -5.03 1.04  22.8  19.2
At (min) -0.192(10°%)  44.2  19.6  -2.91  68.0 -28.2
Ab2(106 t) 2137(107% 2,75 0.374  -0.221 -4.45 -2.24
Ab3(106 ft) -8. 03(10‘6) -0.691 1.66 -0.014 -1.29 -4,52

2

E 3 . .
b, and b3 are components of geocentric impact parameter.
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c. Conclusions

From Tables 2-2 and 2-4 the following conclusions may be

drawn:

1)

2)

3)

4)

0-Long

For the error source magnitudes used, the final inertial
guidance re-entry errors are much too large for manned
re-entry without a midcourse correction.

In turn, the autopilot re-entry errors are from ~1.7
times (90 hours) to ~6 times as large as the IG re-entry
errors.

For the autopilot cases,

.at 50 hr by far the largest re-entry error contributions
are thrust, T, and liftoff weight, Wo’ errors.

at 90 hr the major contributors are errors in A , T,
and W _ with the T and W_ error terms having much
less effect than at 50 hr ﬁight time.

The launch site and reference error sources B )\0’ Ao’
r_ are common to both autopilot and IG cases. Thus even
if'the inertial guidance system performed with no error,
these sources would limit the final accuracy to the follow-
ing, unless improved:

= 9°, Ol = 1.36°, o5 = 5.7°, (50 hr)

Table 2-4. Uncorrected Miss Covariance Matrices

P3 - Powered Flight Inertially Guided

Re-entry Long
Re-entry Lat
Re-entry Angle

Re-entry Long
Re-entry Lat
Re-entry Angle

Re-entry Re-entry Re-entry
Long (deg)Z Lat (deg)Z Angle (deg)2
(12.40) -16.1993 -71.4795

(1.37)% 7.5002
Symmetric (5. 76)2

P4 - Powered Flight Inertially Guided

(13.41)% -66.1285 -92.7996
(4.94)> ’ 34.3354
Symmetric (6. 95)2
| |
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Comparing these with the final IG errors from Table 2-4 of

O-Long = 12.40, Clat ° 1.370, 0"3 = 5.80, (50 hr)

it is seen that almost all of the final re-entry error in the IG
case is due to launch site uncertainty and reference direction
errors.

4. Midcourse Guidance

a. The Basic Process

With a fully attitude controlled spacecraft, it is possible to
correct three components of miss at a target, corresponding to three velocity
components, each time a correction is made. In both of themidcourse correc-
tions of the standard mission, three quantities -- re-entry latitude, longitude,
and angle -- will be controlled. The following sequence of operations comprise

the midcourse correction process:

1) Following lunar injection, the spacecraft is tracked by
the three stations of the DSIF network. The data is
relayed to the control computer where the spacecraft
orbit is determined by a standard least squares tracking
program. One output of the program is the covariance
matrix of estimated re-entry conditions. When sufficient
tracking data has been obtained to reduce the orbit deter-
mination uncertainty to a small value in comparison with
the re-entry uncertainties based on the a priori injection
guidance error covariance matrix, a first midcourse
correction is computed. Two models of DSIF accuracy
were used, as explained later. A data rate of one obser-
vation set (R, E, A) per minute was employed. No range
data was included.

2) Approximately 8 to 12 hours after injection a midcourse
correction is computed and transmitted to the spacecraft.
On command, the spacecraft principal axis (rocket thrust
axis) is turned to the computed direction with an angular
accuracy of 2 mils (lo) assumed in the basic comfigura-
tion. On command, the computed velocity is added using
the spacecraft vernier engines. The velocity increment
is assumed to be controlled by an accelerometer cutoff to
an accuracy of 0. 4 (10‘4) times magnitude of correction.
A cold gas propulsion system is used immediately follow-
ing the hot gas correction as a vernier on the velocity
increment. The thrust cutoff is assumed to be 0.01 fps
(lo). Following the correction, the spacecraft axis is
returned to the cruise orientation.

5



3) The spacecraft is again tracked until the orbit deter-
mination errors are small in comparison with an a
priori estimate of the re-entry condition including the
statistics of the first midcourse execution errors.

4) 20 to 50 hours after the first midcourse correction, a
second midcourse correction is made to remove a part
of the previous tracking and midcourse execution errors.

5) Tracking of the spacecraft continues throughout the flight
in preparation for the re-entry phase (not treated in this
report), but no further midcourse correction is required.

b. Fuel Requirements for a Single Midcourse Correction

Two factors govern the choice of times ty and t, at which cor-

rections are to be made:

1) Sufficient time must have elapsed before the first correction

in order that the orbital elements may be determined with
reasonable accuracy by tracking.

2) Consideration must be given to fuel requirements, whose
statistics are a function of t1 and t2 .
On a particular mission it may be desirable to apply values
(weights) to accuracy and to required fuel, and to optimize a linear combina-

tion of these. We have not attempted to do this here.

The growth of orbit determination accuracy with the length of
time the spacecraft has been tracked is illustrated in Ref. [3] . As a further
guide to the choice of the first midcourse correction time tl’ it is of interest
to consider the velocity increment required for a single midcourse correction

as a function of the time of correction.

When the time t, at which the first midcourse correction is
to be made is sufficiently late so that tracking errors are small compared
with injection errors, then the probability distribution of the velocity cor-
rections is essentially independent of tracking errors. We have studied

. . . . L% .
fuel requirements of the first correction on this basis. For a given

%
A more accurate analysis based on a Monte Carlo simulation is presented
later in this section.
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trajectory, the uncorrected miss in latitude, longitude, and re-entry angle
is characterized statistically by a 3 x 3 covariance matrix Zl . Let B be
the 3 x 3 matrix which relates the midcourse correction velocity vector

components Vx to variations in latitude, longitude, and re-entry angle.

v
y
v
z
AW -1 -1.T . . . .
Then, L, = B 1 (B 7)" 1is the covariance matrix of the correction vector
Vx . Figure 2-5 presents graphs of the 1o values of the x, y, z components
v
y
v
z

of the corrections versus time of execution for trajectories P-3 and P-4.
From Figure 2-5 it may be seen that the midcourse velocity requirement
does not vary strongly if the correction is made anywhere in the interval
from 15 to 40 percent of te -
c. Method of Analysis

The tracking and midcourse correction sequence described
above has been simulated by a Monte Carlo method to determine the prob-
ability distribution of errors after each correction and of the velocity
increment required for each correction. The technique which was developed
is applicable toan arbitrary number of midcourse corrections. Figure 2-6
is a block diagram of the gross features of an n-midcourse correction
simulation. Let us consider the first block of this diagram, corresponding
to the first midcourse correction. The inputs to this block are:

1) )\1, (TN Bl, the actual (uncorrected) miss in
re-en]try coordinates before the first mid-
course correction. This miss arises from
lunar powered flight burnout errors. In

general, \ , p,, B, is the actual miss after
the (k-1) st correction.

2) Zl’ the 3 x 3 covariance matrix of \,, My
61 . ). is the covariance matrix of 1the
uncorreécted miss and comes from the

powered flight analysis.
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e - -

3) V(v), the 3 x 3 covariance matrix of exe-
cution errors as ail’mction-of the commanded
correction vector v . Zv(v) is discussed below.

4) Z 1’ the 3 x 3 covariance matrix of \, pu, B
based (solely) on DSIF radar tracking from
t , injectiontime, to t,, the time of the first
midcourse correction.

The outputs of the first block are V: + 67/:, 7\2, Koo [32 and ZZ . ‘_”1 + 63:
is later combined with ;’2 + 63.2, etc. to determine the fuel requirements.

> is 2 3 x 3 covariance matrix of the resultant accuracy if no other correc-

tions were made. )\2, Py (32 and Z , together with Zv(v) and R2® 2re the
inputs to the next block. Note thatZR2 comes from DSIF tracking from
t1 to t2 .

A fundamental part of the Monte Carlo scheme is the STL
Random Vector Generator (RVG) program which generates N Gaussian
random variables having a prescribed N x N covariance matrix. N may be

as large as 50. For example, if we input Zl to this program,

Zl RVG ——» A, 1,8,

the program will generate three Gaussian random variables )‘l’ My (31, having

1 as their covariance matrix.

Let us now consider in detail the operation of the first block
(first correction) in Figure 2-6: h
-1 :
1) Z'l + Z'l = Z = 3 x 3 covariance
1 Rl 1

matrix of best estimate of re-entry coordi-
nates before correcting.

1 SX
2) Zl — RVG [—— b ;
58
1
these will constitute the portion of miss

after the correction due to errors in orbit
determination.
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3) N F BN
—B;l wy t ooy | o= 7’1 = commanded correction
By * %8y

4) Zv(v’l) = 3 x 3 covariance matrix of

execution errors (discussed below).

5) Zv(vl)——-—» RVG |—— 67; = errors ip

execution of commanded correction (Note:
+ 8V is the actual correction which is

executed)l.
6) )\2 Bxl
= i di .
Mo = Spl + B1 iiV1 actual remaining
i B2 i 6‘31
miss after 1st correction
Yooy -, T _ .
7) 5 = zl + BIZV(VI) B1 = covariance
R
matrix of by
ﬁ2
)
The outputs Mo and ZZ now serve as
P
.

inputs to block 2.

This process can clearly be repeated as many times as desired to simulate

an arbitrary number of midcourse corrections.
~-68-
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In the Monte Carlo simulation, a required input is the covariance
matrix of execution errors, ZV(VFI. To study execution errors, it is conven-
ient to transform to spherical coordinates of the commanded correction, V,

0, ¢, as shown in the accompanying diagram:

%

Then the expressions for velocity errors in terms of basic error sources

are

6V=k_b+ka ,

§Vy = Vsin $60

6 = Vo
V¢ ¢ t]

where k.b is velocity error due to engine cutoff control, kP is a propor-
tional accelerometer error, and 60 and &8¢ are angular orientation errors.
We assume k’b’ kb’ 80 and 0¢ are independent gaussian errors with known
standard deviations. Provision is made, however, for these errors to be
correlated from one correction to the next. Provision is also made to
permit the standard deviations of these errors to be different for each

midcourse correction.

Since the covariance matrix ZV(VS is expressed in terms of

rectangular coordinates, it is necessary to introduce a rotation, U,
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relating variations in spherical coordinates to variations in rectangular

coordinates:
_ _ - -
o6V A"
X
oV = U o6V ,
y 0
SVZ 6V¢
where
— —
sin & cos 6 -sin 6 cos b cos 0
U = sind sin 8 cos 6 cos ¢ sin 6
cos ¢ 0 -sin ¢
L -

The final form of Zv(w is therefore

v

X
ZV(VS' =1 vy [vx VY vz]

v

z
kzp kzb
= viu 662 sinZ & vl +u o |u
Py 0

Thus ZV(W may be evaluated numerically as soon as V, 8, $ for the com-

manded correction are specified.

d. Simulation Results

Each complete cycle of the Monte Carlo program corresponds
to a typical simulation of a moon-to-earth return. By cycling the program
several thousand times, a random sample of outputs is obtained, from which
cumulative probability distributions of midcourse velocity requirements and

re-entry errors may be obtained.
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Table 2-5 lists the results of a Monte Carlo simulation of the
midcourse guidance and tracking phase of trajectories P-3 and P-4 using a
sample size of 2000 runs. The DSIF and execution errors listed earlier
were assumed (for convenience, these errors and the re-entry miss before
midcourse correction are also listed in Table 2-5). Both autopilot control

and inertial launch guidance are compared.

Table 2-6 is of interest because it shows the change in re-
entry error and midcourse velocity requirement for four perturbations of the
system configuration:

1) A factor of 10 degradation in velocity execution
accuracy

2) A factor of 5 degradation in angular orientation
accuracy at midcourse

3) Tracking data rate of 1 observation set each
10 minutes

4) Tracking data rate of 6 observation sets each
minute (standard DSIF rate).
The entries labeled "standard" correspond to the tracking and execution errors

listed in Table 2-5 and a DSIF data rate of one observation set per minute.

From Table 2-6, it became apparent that final accuracy was
"tracking limited, " in that the final accuracy attained was essentially the
accuracy with which the orbit could be re-established by tracking from the
first to the second midcourse maneuver. Within wide limits, execution errors
were negligible. This fact made it imperative to take a second look at the DSIF
accuracy model used in the simulations. In cooperation with JPL, a new
DSIF model was decided upon: o

R
at a data rate of one set of observations per minute. The new model degrades

= 0.5 ft/sec, 0, = op = O, 2°, uncorrelated,

the accuracy assigned to angular measurements to take into account the fact
that the true angular observations are actually correlated (see Part IV). The
degradation factor depends on the assurmed data rate and is lower for lower

data rates.
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Standard Mission:
and Final Accuracy

Table 2-5.

Midcourse Velocity Requirement

® System Characteristics

1. Launch site:
Re-entry:

2. Powered flight

Near earth- -moon line ("’7 W, 5 N)
30°N Latitude

guidance: Present state-of-the-art inertial guidance system,
, or autopilot with accelerometer cutoff.
3. Tracking: DSIF, 3 stations, 0apni1es = 0.04%, op = 0.5 fps,
no range data 1nclude§ data rate = 1 point/minute
4. Execution
errors: Orientation angles 2 mils (10¢) 4
Accelerometer constant 0.4(10° ") (1o)
Thrust cutoff 0.01 fps (1l0)
® 50 Hr Flight (P-3), Inertial Guidance 8
Lat Long re AV
(deg) (deg) (deg) (fps)
Uncorrected miss (lo) h 1.37 12.4 5.75
After 1st midcourse at 8 (68 percent ) 0.23 1.3 0.58 16.1
After 2nd midcourse at 32h(68 percent *)0.014 0.10 0.04 7.3
( Vo = 22.8)
Autopilot
Uncorrected miss (lo) 9.44 70.0 31.5
After 1st midcourse at 87 68 percent) 0.23 1.3 0.58 49.8
After 2nd midcourse at 32%(68 percent) 0.014 0.10 0.04 7.3

90 Hr Flight (P-4), Inertial Guidance

Uncorrected miss (lo) 4.94
After 1st midcourse at 12h(68 percent) 0.48
After 2nd midcourse at 64(68 percent) 0.021

Autopilot

Uncorrected miss (1o) h 9.03
After 1st midcourse at 12 (68 percent) 0.50
After 2nd midcourse at 64P(68 percent) 0.022

( Vi =55.4)

6.95

0.67 14.0
0.029 3.5
( VT = 16.5)
11.6

0.68 112
0.031 3.5

( VT = 115)

E3
Monte Carlo Simulation, 2000 runs.
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Table 2-6. Effect of Changes in Midcourse Execution Accuracy and

Tracking Data Rate

e System Configuration

90 hr flight (P-4), all characteristics as listed in Table 2-1

/
e Inertial Guidance B
h « Lat Long re AV
/ After 1st midcourse at 12 (68 percent ) (deg) (deg) (deg) (fps)
/
/
’ l Standard configuration 0.48 1.45 0.67 14.0
Velocity execution degraded (x10) 0.50 1.50 0.70 14.0
Angle execution degraded (10 mils) 0.50 1.50 0.67 14.0
Tracking rate 1/10 min 1.50 4.70 2.10 14.5
Tracking rate 6/min 0.20 0.60 0.27 14.0
1 ' After 2nd midcourse at 64h(68 percent)
I Standard configuration 0.021 0.068 0.029 3.5
i Velocity execution degraded (x10) 0.026 0.080 0.037 3.5
j . Angle execution degraded (10 mils) 0.024 0.075 0.034 3.5
Tracking rate 1/10 min 0.069 0.220 0.097 11.1
Tracking rate 6/min 0.009 0.029 0.013 1.4
l e Autopilot
l After 1st midcourse at 12h(68 percent)
Standard configuration 0.50 1.5 0.68 112
Velocity execution degraded (x10) 0.50 1.5 0.70 112
l Angle execution degraded (10 mils) 0.70 2.2  0.95 112
Tracking rate 1/10 min 1.6 4.7 2.2 112
Tracking rate 6/min 0.23 0.7 0.33 112
l After 2nd midcourse at 64h(68 percent)
Standard configuration 0.022 0.067 0.031 3.5
. Velocity execution degraded (x10) 0.026 0.085 0.038 3.5
Angle execution degraded (10 mils) 0.024 0.076 0.035 4.3
Tracking rate 1/10 min 0.069 0.220 0.097 11.0
l Tracking rate 6/min 0.009 0.029 0.013 1.5
B3
' Monte Carlo, 2000 runs
§ e




New simulations were then performed using the new DSIF model.
Since it has already been established that final accuracy was tracking limited,
it was of primary interest to simulate the tracking from first to second mid-
course maneuver. The results are presented in Table 2-7 for Trajectory P-4,
corresponding to the second midcourse correction being made at 64 hours (as

before) and also at 80 hours.

Table 2-7. Standard Mission

Tracking Interval GLong TLat g

(hours from injection) (deg) (deg) (deg)
12-64 0.21 0.067 0.096
12-80 0.053 0.016 0.023

Final accuracy for P-4 using new DSIF model (0-1.{ = 0.5 fps, Tp = Op = 0. 20,
one set of observations per minute), corresponding to making the second mid-

course correction at 64 hours and 80 hours, respectively.

The accuracies quoted in Table 2-7 are somewhat pessimistic, since no a priori
information was used in the tracking. If a priori information were included, one
could expect the results at 64 hours to be reduced by at least 50 percent. The

results at 80 hours, however, will not be very sensitive to a priori data.

We have already seen in Table 2-6 that the fuel requirement (AV)
for the first midcourse maneuver depends only on injection errors and is insen-
sitive to tracking accuracy or execution errors, within wide limits. Thus, the
fuel requirement for the first midcourse maneuver, given by Table 2-5, is not
altered by using the new DSIF model. The fuel requirement for the second mid-
course maneuver, however, depends on how well the first maneuver is performed,
which in turn depends on DSIF accuracy. Thus for P-4, the fuel requirement for
the second midcourse made at 64 hours will be approximately L1 fps (68 percent
level) when the new DSIF model is used. When the second midcourse is made at
80 hours for P-4, the fuel requirement will be somewhat higher due to the loss

of sensitivity. We have not performed the exact simulation to obtain this value.

i



We shall summarize this section by drawing the following

considerations:

1) The system simulated, when used with two
midcourse corrections, provides adequate
accuracy for manned re-entry. Typical
re-entry dispersions are (ingrtial launch
guidance, 90 hour flight, 2% midcourse at
64 hours):

Trat - 0.07 degree (4 n mi)
U-Long = 0.2 degree (10 n mi)
D—ﬁ = 0.1 degree

re

(These values may be reduced by a factor of

4 by making the second correction at 80 hours.
For comparison, a typical manned capsule

with an L./D = 0.5 should allow reaching a
landing site anywhere within a re-entry
footprint 800 n mi in width and extending from
a point 1500 n mi from the sub-re-entry point
to a point 3500 n mi from re-entry. A re-entry
flight path angle tolerance of 3 degrees - full
corridor width - can be permitted).

2) Compared with an allowable 3 degree corridor

width (+1.5 degree): neither guidance system
(or t.) will suffice uncorrected. Both systems
and tf 's are very accurate after two corrections
(~ 0.1 degree 1v).

3) Following execution of the first midcourse
correction, there is essentially no difference
in re-entry accuracy between the autopilot and
inertial systems for a given flight time.

4) The autopilot controlled flights require 2 to 5
times as much midcourse fuel (velocity incre-
ment) as the inertially guided flights. The total
velocity increments required are (68 percent):

50 hours IG 38 fps 90 hours IG 25 fps

50 hours autopilot 72 fps 90 hours autopilot 123 fps

88
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5) Employing two midcourse corrections, degradations of a
factor of 10 in velocity execution accuracy or a factor of
5 in angular orientation accuracy cause negligible change
in re-entry accuracy.

It should be reemphasized that the mission analysis carried out
here has neglected the effects of physical constant and station location errors
which will degrade the performance displayed here somewhat. However, the use
of the full DSIF data rate and of ground based range data and possibly moon-

based doppler could all serve to improve the tracking safety margin.

C. Minimal Mission

The minimal mission discussed in this chapter has many features in
common with the standard mission of Section B. Therefore, although computa-
tional results are given for all phases, in order to avoid undue repetition, only

those features which are unique to this mission will be stressed.

1. Mission Description

The moon-earth mission analyzed inthis chapter is a "minimal"

mission in that it meets the following conditions:
a) Attitude is controlled by spin-stabilization

b) Lunar powered flight lasts until fuel depletion, or as an alter-
native an accelerometer cutoff may be used.

¢) Restrictions on re-entry are loose in that accelerations and
heating rates outside manned re-entry tolerances are permitted.
Only longitude and latitude of re-entry are controlled by mid-
course corrections.

At launch, the vehicle is pointed in the proper direction and spun up,
either slightly before or slightly after it is released by the launching mechanism.
Maintaining this fixed attitude, the vehicle burns either to fuel depletion or to
accelerometer cutoff, depending on the details of the system employed. Two
spin-stabilized midcourse corrections to modify re-entry longitude and latitude
are scheduled at pre-selected times t and t,, where ty is typically 10 hours
after launch and t, is typically 20 to 30 hours after t,. The free flight of the
spacecraft is tracked by the DSIF from lunar burnout until t;, at which time an
orbit determination by least squares fit is performed. Both midcourse velocity
corrections are computed on the basis of this tracking prior to t,. The remain-

ing free flight portions of the trajectory are then tracked by DSIF for two purposes:
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a) This additional information may be used to slightly modify the
magnitude and timing of the second correction.

b) The tracking is used in the prediction of the actual re-entry.

2. Transit Trajectory

In the generation of moon-to-earth free flight trajectories for the
minimal mission, the longitude of the lunar launch point was chosen to be near
the vertical landing area of a spacecraft on a 66-hour earth-moon flight
(A ~ -50 degrees, p.~ 0 degree). Several trajectories originating in this area
were generated, and three of these were selected for detailed analysis. These
trajectories (S-1, S-3, and S-5) correspond approximately to the following flight

time re-entry combinations:

S-1 te = 50 hours pre = 170 degrees (i.e., 80 degrees from the horizontal)
S-3 te = 90 hours Pre = 110 degrees (i.e., 20 degrees from the horizontal)
S-5 te = 90 hours ﬁre = 170 degrees (i.e., 80 degrees from the horizontal)

All three return to approximately 30°N latitude at re-entry. Table 2-8 lists

the complete burnout and re-entry conditions for the trajectories.

Miss coefficients (i.e., variations in re-entry conditions withres-
pect to variations in burnout conditions) are given in Table 2-9 for S-1, S-3 and
S-5. Figures 2-7 and 2-8 show projections of the S-5 trajectory on the x-y and
x-z planes. In this equatorial coordinate system, the x-axis is toward the
vernal equinox while the z-axis points North in a right handed system. The near-

restilinear character of the steep re-entry trajectory is apparent in these figures.

3. Powered Flight and Injection Guidance

Launch from the moon's surface is to be effected using a single
stage spin-stabilized vehicle. As in the standard mission, Isp = 300 and liftoff
thrust-to-earth weight is four. Using these parameters, it is possible to fit
constant attitude powered flight profiles to the burnout conditions of S-1, S-3
and S-5.

The above three constant attitude powered flight profiles are quite
similar, so that for the error analysis, a single nominal profile was used to
generate the A, covariance matrix of in-plane burnouyt errors. (Previous

studies of similar lunar powered flight profiles [1] have shown that this is a
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Burnout time

Table 2-8. Burnout and Re-entry Conditions for Trajectories
S-1, S-3, S-5
Burnout:
r A M v B A
Trajectory [£t) (deg) (deg) (fps) (deg) (deg)
S-1 5733000. -45.009 4.022 9494.47 65.674 90.932
S5-3 5733000. -45.0803 5.19 8710.07 78.49 77. 486
S-5 5733000, -45.013 3.867 8445.96 80.862 92.755

S-1 191. 790 minutes after Oh GMT, Feb. 5, 1963 (maximum
lunar
declination)

S-3 774.214 Feb. 20,1963 (minimum
lunar
declination)

S-5 689. 387 Feb. 5, 1963

Re-entry Conditions:
B t .
Long Lat re f Altitude
Trajectory (deg) (deg) (deg) (min) (ft)

S-1 -93.216 31.290 163.226 3014 400, 000

S-3 -60. 359 32.266 109, 301 5219 400, 000

S-5 -82.914 28. 707 164. 658 5363 400, 000

-78-




Table 2-9. Re-entry Miss Coefficients

Atf, min A[ire, deg ALatre, deg ALongre, deg

Trajectory S-1

Ar_ = 50,000 ft - 21.3 + 0. 386 +-0.003 +4. 495
AN, = 1deg +-20.5 + 5,695 +-3.199 -19.937
Bp, = 1 deg - 0.3 -.0.459 +1.236 + 0.735
Av_ = 50 fps - .35.1 + 1.893 +0. 451 + 4.556
AB, = 1deg + 28.8 +7.901 +-2.515 -27.766
AA_ = 1 deg + 0.3 +1.504 -15.100 - 3.247

&
Trajectory S-3

Ar_ = 5,000 ft - 4 - 1.57 - 0.29 - 2.72
AN, = 1 deg + 82.88 - 3.56 - 1.23 -29.33
Ay, = 1 deg + 5.51 + 2.28 - 1.9 + 3.94
Av_ = 50 fps - .53.5 -17. 40 + 2.94 -17. 66
AB, = 1 deg +126.7 - 3.4 - 2.47 -39.93
AA_ = | deg - 26.8  + 6.00 - 4.94 +20.3

o

Trajectory S-5

Ar_ = 50,000 ft - 83.4  + 5.068 + 1.340 +9.088
Ay, = 1deg + 68.8  + 1.241 + 1.204 -20.227
Ay, = | deg - 3.5  +0.694 - 5.289 - 0.331
av_ = 50 fps -118.4  + 8.046 + 1.852 + 9.998
AB, = 1 deg +116.3  + 2.109 + 1,424 -34.158
AA = | deg + 2.2+ 0.886 - 8.617 - 2.457

o

“Note that Ar = 5,000 omn trajectory S-3, but Ar = 50,000 on all other
trajectories.
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Figure 2-7. Trajectory S-5. Equatorial Plane View
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valid approximation). The burnout conditions for this nominal profile are
listed below:

V_ = 8473 fps, h = 25,000 ft, B = 80.0 deg (10 degree elevation
° ° ° above horizontal)

Energy = 5.68 (106) ftz/secz, powered flight arc = 1.6 degrees.

Since this is a rather flat trajectory, it suggests that consideration should be
given in any actual mission to the terrain clearance problem. If terrain clear-
ance should become a problem, a more lofted powered flight correcponding to a

faster flight time or to a more easterly launch site would be required.

The basic powered flight error sources for cutoff on fuel depletion

versus cutoff on command from an integrating axial accelerometer are listed

below:
Fuel Depletion Axial Accelerometer
Dry weight, Y3 (%) Liftoff weight, w_ (%)
Propellant weight, wp (%) Thrust, T (%)
Thrust, T (%) Isp (%)
Isp (%) Launch angle, B, (deg)
Launch angle, Plo (deg) Accelerometer scale (%)

Accelerometer bias (0.01 g)

In addition to these error sources, the miss due to not knowing the exact posi-
tion and orientation on the moon of the launch mechanism was considered.
Uncertainties in position and orientation were considered to have the same

values as in the standard mission, i.e.:

= 1000 ft

lo uncertainty in orientation of trajectory plane (launch azimuth error) =
0.25 degree.

Table 2-10 shows the lo values assigned to each basic error source,

together with the standard deviation, variance and covariance of the resultant
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miss at re-entry due to each error source for S-1. Since the source errors
are independent, the miss variances and covariances from the sources may be
summed to yield the total variance and covariance of the miss in longitude,
latitude and angle of re-entry. This analysis was performed for S-1, S-3, S-5,

and both fuel depletion and accelerometer cutoff cases.

The total variances and covariances described above correspond to the
uncorrected miss at re-entry. The uncertainties in longitude and latitude may
be characterized by lo (40 percent) ellipses in longitude-latitude. Table 2-11
lists the semi-major axis, the semi-minor axis and the angle a from the longi-

tude axis to the major axis for each ellipse.

Table 2-11. Parameters of 40 Percent (lo) Uncorrected Miss Ellipses

Semi-major Semi-minor a
Axis Axis Angle ¢
Trajectory (deg) (deg) (deg) (deg)
S-1 Fuel depletion 7.95 3.86 0.27 2.51
S-1 Accelerometer cutoff 6.96 3.83 2.42 2.06
S-3 Fuel depletion 17.97 1.99 5.17 13.65
S-3 Accelerometer cutoff 11.56 1.34 0.20 1.92
S-5 Fuel depletion 11.81 2.47 -4.16 6.29
S-5 Accelerometer cutoff 8.53 2.16 1.62 0.66

It is seen that no marked decrease in re-entry a'long is obtained by
using an accelerometer cutoff. This can be explained by referring to
Table 2-10, where this component of miss may be traced back as arising
mainly from liftoff angle error sﬁLo' This error source is unaffected by the
type of velocity cutoff. Similarly, Tlat is not appreciably reduced by using
accelerometer cutoff. (In S-1 and S-5, this component of miss may be traced
back as due principally to azimuthal misalignment, which is unaffected by the
type of velocity cutoff.) One concludes, therefore, that with the assumed

uncertainties in launch position and orientation, accelerometer cutoff is only
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weakly effective in reducing re-entry misses. However, if the initial pointing
and spin-up errors (AO and ﬁLo) could be reduced, then accelerometer cutoff

would be of great value in further reducing themiss.

4. Midcourse Guidance

a. Basic Method

The underlying principal of spin-stabilized midcourse guidance °
is that velocity impulses applied along the spin axis at different times produce
different effects at the target. This is illustrated schematically below, where
the effects of 1 fps velocity impulses along the spin axis at two times, ty and
t,, are plotted as vectors in longitude and latitude of re-entry. In this
diagram, any vector miss in the longitude-latitude plane can be expressed as a
linear combination of the ty and t, vectors, and can therefore be cancelled
by velocity increments of the proper magnitude and polarity applied along the

spin axis at times ty and ts

Latitude

A t
2 Miss

> Longitude

For trajectory S-1, the effects of velocity increments applied
along the spin axis are plotted in Figure 2-9 as vectors in the longitude-latitude
plane with the time of the impulse as a parameter. In general, it is desirable
that these vectors sweep out a wide angle with time, in order thatmisses in arbi-
trary directions may be efficiently cancelled. It is also generally true that
expected midcourse fuel requirements are reduced if the times t1 and t, are
selected in advance so that the most probable uncorrected miss vector (major
axis of error allipse)lies between the t and t, vectors. Otherwise, the
correction at time ty will probably have to cancel, rather than reinforce, part

of the t1 correction in order to cancel the miss.
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Trajectory S-1

A Latitude

100 fps Impulses

Figure 2-9. Effect on Re-entry Point of Velocity Impulses Applied
Along the Spin Axis at Different Times.

b. Midcourse Fuel Requirements

Midcourse fuel requirements for the minimal mission can be
accurately predicted from the statistics of the uncorrected miss, ignoring the
weak interaction with uncertainties in orbit determination. The analysis is
similar to computing the first correction for the standard mission and will not
be reproduced here. The results are presented in Table 2-12 and Figure 2-10

for different combinations of correction times, t1 and tz, for S-1, S-3, S-5.

It can be seen from Figure 2-10 that, for the source errors
assumed, the 50-hour trajectory (S-1) requires approximately three times the

midcourse velocity increment required for 90 -hour flights (S-3 and S-5).

c. Error Analysis and Final Accuracy

For a mission that used spin-stabilization midcourse correc-
tions, there are two basic problems associated with the error analysis, First,
a midcourse correction logic must be chosen. Second, the non-gaussian

statistics resulting from the products of gaussian variables must be analyzed.

The simplest possible guidance logic is proposed here for

the minimal mission:
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Table 2-12. Midcourse Velocity Requirements for the Minimal Mission
o o
Time 1 Time 2 Vi V2 p
Trajectory Guidance (hr) (hr) (fps) (fps) Vi V2
S-1 Fuel
depletion 8 32 288 1170 -0.500
16 40 370 1266 -0.086
24 40 646 1339 -0.338
S-1 Acceler-
ometer cutoff 8 32 254 1160 -0.511
16 40 327 1241 0.003
24 40 572 1275 -0.236
S-3 Fuel
depletion 6 60 151 282 -0.995
15 60 226 368 -0.995
30 60 380 557 -1.000
45 75 359 760 -0.998
S-3 Acceler-
ometer cutoff 6 60 67 130 -0.978
15 60 100 167 -0.990
30 60 168 250 -0.994
45 75 158 339 -0.991
S-5 Fuel
depletion 12 64 179 207 0.997
32 64 357 21 -0.703
S-5 Acceler-
ometer cutoff 12 64 103 388 0. 442
32 64 206 352 0.128
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1) Select the two midcourse correction times (t, and t

)
in advance 1 2

2) Track from injection until just before t

3) Determine the apparent miss from the tracking data

4) Calculate the correction velocities, V1 and V2

5) Fire V1 at t1

6) Fire V2 at t,.

The following operations are performed for each Monte Carlo

simulation of a flight:
1)  Select the uncorrected miss and the spin axis error with
the Random Vector Generator from their a priori distri-

bution. (These are selected simultaneously since they
are correlated.)

2) Select the tracking error, using the tracking covariance
matrix.

3) Calculate the apparent miss, which is the sum of the
actual miss and the tracking error.

4) Calculate the desired correction velocities from the
apparent miss, using the sensitivities corresponding to
nominal spin axis orientation.

5) Calculate the actual fired velocities by adding the randomly
selected bias and scale-factor errors.

6) Calculate the effects of firing the actual velocities with the
actual spin axis orientation.

7) Add the correction effects to the uncorrected miss to
determine the final miss.

The Monte Carlo simulation is quite fast. If all of the runs for
this report (12) were submitted to the STL 7090 computer in one batch, the total

running time would be less than 3.5 minutes.

Table 2-13 shows the results of 1000 Monte Carlo samples for
each of several sets of errors for trajectories S-1 and S-5. The uncorrected

miss covariance matrix for fuel depletion was used in each case since the
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Table 2-13. Final Accuracies for Minimal Mission Utilizing Two Spin
Stabilized Midcourse Corrections. Results are 99%
Values Out of 1000 Monte Carlo Runs, Nominal and Per-
turbed Error Sources

Resultant Re-entry Miss
(99% values)

Long Lat
(deg) (deg)
Trajectory S-1, Nominal Errors
(Corrections at 16 and 40 hours) 2.26 1.55
Tracking Error XO.1 1.62 1.48
Velocity Bias XO. | 2.28 1.54
Velocity Scale Factor XO.1 2.26 1.53
Spin Axis Orientation XO. 1 1.75 0.82
All Errors XO. 1 0.21 0.16
Trajectory S-5, Nominal Errors
(Corrections at 32 and 64 hours) 1.74 1.15
Tracking Error XO.1 1.69 1.09
Velocity Bias XO. 1 1.74 1.14
Velocity Scale Factor XO.1 1.56 1.13
Spin Axis Orientation XO. 1 1.00 0.58
(Uncorrelated)
All Errors XO. ! 0.16 0.11
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improvement in uncorrected miss obtained with accelerometer cutoff is slight.
For each trajectory, runs were made with the nominal errors, with each error
reduced by a factor of ten, and with all errors reduced by a factor of ten

simultaneously.
The nominal execution errors (lo) used are:
Velocity bias 2 fps
Velocity scale factor 0.02

The spin axis orientation error used corresponds to indepen-
dent errors of 0.5 degree (l¢) in azimuth and elevation at launch. Since the
initial miss is also a function of launch azimuth and elevation, it is correlated
with the error in spin axis orientation. This correlation is included in the

Monte Carlo Program.

The standard tracking error used is the result of tracking to
the time of the first correction at one point per ten minutes with the DSIF on the

assumption of 0.5 fps and 0.2 degree (lo) errors.

From the results it can be seen that the tracking and spin axis
orientation errors are dominant for the S-1 trajectory and that the velocity
scale factor and the spin axis orientation are dominant for the S-5 trajectory.
For both trajectories, however, improving the knowledge of the spin axis gives

the largest reduction in final miss.

Since the spin axis orientation error is important in both
trajectories, the accuracy with which it can be measured with tracking data was
calculated. In the calculation it was assumed that the direction of the velocity
with respect to the moon at burnout is along the spin axis. This is a reasonable

assumption since the powered flight is very short.

The accuracy with which the three components of burnout
velocity can be measured was determined with tracking data up to the time of the
first correction. These accuracies were then converted to accuracies in the
angles 6 and ¢ used in the simulation. (The angles 9§ and ¢ are the usual
spherical coordinates of the velocity vector relative to the inertial x, y, z

reference.) The following are the results:

101
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A Priori lo Errors Tracking (only) 1o

Trajectory 173 . Errors
(milliradians) (milliradians)
0 ¢ 9 ¢
S-1 4, 69 3.99 0.398 16.8
S-5 4.62 4,27 0. 840 19.0

The tracking data allows a considerable improvement in the
knowledge of 6, but tracking accuracy is not as good as the a priori knowledge
of ¢. However, if the data rate were increased (e.g., to 1 point per 10 seconds),

improvement in the knowledge of ¢ could also be obtained.

The result of reducing all the errors by a factor of 10 simul-
taneously is essentially a reduction of the final miss by a factor of 10. This is
to be expected since the final miss is the sum of the tracking error, the velocity
bias error, and errors proportional to the correction velocities. For the
trajectories studied, the magnitude of the required correction velocities are
essentially the same for the normal and the reduced tracking error. As a result,
the miss proportional to velocity is reduced almost exactly in the same ratio as
the other terms. If the tracking error were comparable to the initial miss, on

the other hand, the proportional miss would be reduced by a greater factor.

D. Orbit Determination for Return Mission

This section deals with aspects of orbit determination which are peculiar
to the moon-earth mission, as opposed to the general discussion contained in
Part IV. For the lunar return missions, it is assumed that orbit determination
is effected by tracking the free flight portions of the trajectory with the three
DSIF stations, and then applying least squares procedures to estimate the six
o.rbital elements at a chosen epoch. The radar elements used were range rate

(R), azimuth (A) and elevation (E).

The primary purpose of tracking the spacecraft is to establish the
various free flight trajectory portions with sufficient accuracy to enable the
midcourse corrections to be computed. This is an essential function for both
the standard and the minimal missions, since we have already seen that the

uncorrected misses are too large to be acceptable. Thus, one of the objectives
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of orbit determination analysis is to simulate this real-time function. A
secondary objective is to determine in advance the favorable times at which to
make the midcourse maneuvers. This is done by simulation methods, also, and
must take into account fuel requirements as well as final accuracy requirements.
Lastly, orbit determination analysis must be concerned with making these
simulations as realistic as possible. This involves using noise models which
are as realistic as possible and take into account "hidden" errors such as

correlations and biases in the observation.

1. Standard Mission

As mentioned earlier, some of the initial tracking simulations
were done using an "old" model for DSIF noise in which Ul-{ = 0.5 fps,
oo = 0 = 0. 04°, with all observations being uncorrelated. These results
were used in Monte Carlo simulations of the standard mission, and are

described below.

On the standard mission, the time of the first midcourse correc-
tion was set somewhat arbitrarily at 12 hours. This choice was based
primarily on fuel rather than accuracy requirements. (Table 2-7 has shown
that even with the old (optimistic) DSIF noise model, tracking errors dominate
the uncertainty in re-entry just after the first midcourse.) Thus the critical
tracking period, to determine final accuracy, was from 12 hours after injection
to the time of the second midcourse maneuver. Table 2-14 shows re-entry
uncertainty due to tracking in this interval, as a function of the time of the
second midcourse correction for trajectory P-4. This table includes the effect
of a priori data at 12 hours and is based on the old DSIF model.

In Table 2-14, a priori information was handled in an approximate
way as follows: Let A1 be the 6 x 6 covariance matrix of o _12B tracking,
evaluated at 12 hours. Let AE’

|

0 1o
A = |=m=t==--
E
0 :ZV

be the 6 x 6 covariance matrix of execution errors, where ZV is the 3 x 3

covariance matrix of execution velocity errors evaluated for a correction of




magnitude "2¢" in the x, y, z directions. Then A1 + AE was used as the
6 x 6 a priori tracking covariance matrix. If AZ denotes the 6 x 6 covariance

matrix for tracking from 12 hours to the second midcourse, evaluated at

12 hours, then 7&‘2,

s [ -1, . ]t
is the covariance matrix representing tracking from 12 hours to the second

A
> and 2

convenient to update these matrices to re-entry time and look at the corres-

midcourse correction, including a priori data. To compare A it is

ponding uncertainties in re-entry conditions. This is done in Table 2-15.

Table 2-14. Standard Mission, Trajectory P-4. Re-entry uncertainty resulting

from 12h to secong midcourse correction. o = 0.5 fps
oA = o = 0.047, one set of observations per minute. A priori
information included, correlations and biases neglected (old DSIF
model)
Tracking
Interval o v v
(hours from Longitude Latitude Re-entry angle
lunar B.O.) (deg) (deg) (deg)
12 - 32 0.45 0.14 0.21
12 - 48 0.15 0.047 0.067
12 - 64 0.065 0.021 0.030
12 - 80 0.034 0.010 0.015

Table 2-15. Standard Mission, Trajectory P-4. Re-entry uncertainty resulting
from using or not using a priori data in tracking from 128 to second
midcourse correction. og = 0.51fps, 0o = o = 0.04", one set
of observations per minute (old DSIF model)

Tracking

Interval With A Priori Data Without A Priori Data

(hours from -

lunar B.O.) 0-long Tlat ;] o-long Tlat B
12 - 64 0.065 0.021 0.030 0.140 0.045 0.063
12 - 80 0.034 0.010 0.015 0.041 0.013 0.018
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In this table, it is seen that when the second midcourse correction is made at
64 hours or earlier, final uncertainty can be significantly reduced by using a
priori data. On the other hand, at 80 hours a priori information does not

strongly affect the final uncertainty.

The Monte Carlo runs using the old DSIF model indicated that even
after the second midcoﬁrse maneuver the final accuracy was still tracking
limited. This led to a re-examination of the DSIF noise model to insure that
the basic assumptions were as realistic as possible. The result was a new,
more conservative model for angular noise which included correlations and

biases:

A or E Noise

Component RMS Value Time Constant
Random 0.01 deg 10 sec
Random 0.01 deg 5 hours
Bias 0.005 deg (o)

For a nominal data rate of one set of observations per minute, it can be shown
that the random components of noise in the above model produce an effect which
is no worse than that produced by uncorrelated noise having RMS value 0.2 deg
(see example 3 of Part IV). Thus, by simulating the tracking operation with
or = 0.5 fps, op = og = 0. 2°, uncorrelated, at one observation set per
minute (which we shall call the new DSIF noise model), we can study the effects
of the random components of noise. (For different data rates, the degradation

factor on angles is different.) Biases will be considered later.

Table 2-16 shows a comparison of the old and new DSIF noise models
for tracking from first to second midcourse correction, Trajectory P-4. Also
included is the result of using no angular data at all (0p = op = o), from
which one can see that almost all the information is contained in the R data.
No a priori data was used in this table. Including a priori data would reduce
the uncertainty for 12h - 64h tracking by approximately 50 percent, but would

probably not affect the 12% - 80" tracking significantly.

The deleterious effects of unsuspected biases in angular measurements

can be studied by the methods described in Part IV. Table 2-17 contains the
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results of such an analysis for the old and the new DSIF models. This table
shows the effects of "unsuspected" biases in A and E measurements for each
tracking station of RMS (a priori) value 0.0l degree. It is seen that the old
DSIF model is quite sensitive to angular biases, since it weights angular data
more heavily. In fact, comparison with Table 2-15 shows that it is better not
to include angular data at all than to weight it according to an RMS value of
0.04 degree when the RMS bias is 0.01 degree. One sees that angular biases
do not affect the new DSIF model significantly, since angular accuracies have

been considerably degraded.

Table 2-17. Standard Mission, Trajectory P-4, Effects of unsuspected biases
on re-entry uncertainty. In least squares fit, data is weighted
according to the RMS of its uncorrelated component. Data rate is
one set of observations per minute

Tracking Tracking Noise
Interval Uncorrelated Bias Re-entry Uncertainty
§ﬁg::strgrx; R Tp» Op Tar T %long Tlat 0"3
~_ | (ips) (deg) (deg) (deg) (deg) (deg)
12 - 64 .5 0.04 0.01 0.27 0.084 0.12
12 - 80 0.5 0.04 0.01 0.071 0.020 0.031
12 - 80 0.5 0.2 0.01 0.055 0.017 0.024

2. Minimal Mission

For the minimal mission, the critical tracking period was, of
course, the period from lunar burnout to the time of the first midcourse
correction. (Subsequent tracking was not utilized in the simple guidance logic
for this mission, although this logic could be modified to include later tracking
if it were considered desirable or necessary.) Both the old and the new DSIF
noise models were used in the tracking simulations. Since the latter model is
of chief interest, we have summarized the results in Table 2-18. This table
does not include any a priori information. In the Monte Carlo simulations, a
priori information is entered separately and combined with tracking information

in the computer.
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Table 2-18. Minimal Mission Tracking Results for o

0.5 fps,

Cp=0p= 0. 2% one set of observations per 10 minutes

Re-entry Uncertainty

Tracking Interval - - Correlation
(hours from long lat Coefficient
Trajectory lunar B. O.) (deg) (deg) P
S-1 0-16 0. 63 0. 30 0.3
S-5 0-12 0. 49 1.17 0. 67
S-5 0 - 32 0. 15 0. 22 0. 38
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1. CIRCUMLUNAR TRAJECTORIES

This Part describes the study plan for research currently being performed
in the field of lunar trajectories, and some preliminary results and considerations

which are available.

A, Free-Return Circumlunar

1. Introduction

‘ We shall discuss first a preliminary analysis of free-return
circumlunar trajectories which led to a better understanding of the overall
properties of such trajectories and subsequently to the Analytic Circumlunar
Program. The model on which this analysis and the Circumlunar Program is
based was described and used in Part I in connection with moon-to-earth trajec-
tories. It consists of enclosing the moon in a sphere within which only the
moon's gravity is considered and outside of which only the earth's gravitational
field is in effect. With such a model, a circumlunar trajectory consists of a
conic in the moon phase (within the sphere) and two conics in the earth phase,
as shown in Figure 3-1. . These conicsare such that positions and velocities match
at the phase boundary. The apparent discontinuity in the velocity in Figure 3-1 is
due to the fact that both earth-frame and moon-frame conics have been shown in
a single figure; since the moon is revolving about the earth a velocity transla-

tion is required at the junction.

We shall treat three dimensional circumlunar trajectories,
restricted to single revolution trajectories. That is, they will begin near the
earth, enter the sphere of action in some manner, and then exit and return to
the earth. The moon-phase conic will be hyperbolic, except in very rare cases,
whereas each leg of the earth-phase conics may be independently elliptic,

hyperbolic, or parabolic.

2. General Analysis

Consider now some of the general properties of circumlunar
trajectories. As indicated in Figure 3-1, therearetwo"corridors" connected
with the moon's sphere of influence, i.e., an entrance corridor lying in the
western hemisphere of the moon and an exit corridor lying in the eastern

hemisphere. These corridors exist with respect to a moon-centered coordinate

12
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Figure 3-1. Schematic of Circumlunar Flight
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system. Itis realized that circumlunar trajectories other than the type shown
in this figure exist, such as one going considerably beyond the moon [32] » but
only that class of trajectories which produce the closest approach to the moon

will be considered here.

Figure 3-2 shows the configuration of these corridors on the
moon's sphere of influence as seen by an observer on the moon. The horizontal
Plane is taken as the moon's orbit plane. If the complete class of trajectories
launched from the earth from a fixed altitude and impacting the moon were
considered for a fixed time of flight (or equivalently a fixed energy) then all
trajectories launched by direct ascent with flight path angle BL will havé a
fixed in-plane conic section. The only degrees of freedom which this conic may
have is then the orientation of its plane and all possible orientations may be
produced by essentially rotating the conic section about the line connecting the
center of the earth and the ﬁL = 0 point on the sphere of influence. The result
will be the generation of the constant ﬁL contours shown in Figures 3-2a. That
is, the trajectory will have its velocity vector pointing from this contour to the
center of the moon when it reaches the sphere of influence. For the class of
trajectories which produce circumlunar results, i.e., returning to the earth's
atmosphere, these constant BL contours will be displaced slightly to compen-
sate for non-impact. Also, it is clear that launching from a parking orbit will
represent the limiting flight path launch azimuth contour of ﬁL = 90 degrees.

It is interesting to observe that the set of all possible parking orbit launched

trajectories will form the envelope of all direct ascent trajectories.

Returning to the assumption that the earth-phase energy on the
outward leg is fixed, then the magnitude of the vehicle's earth-phase velocity
U at the sphere will remain constant whereas its direction will vary within a
few degrees of the earth-moon line. The moon-phase entry velocity v will
depend on the vector addition, v = u - Em’ where Ern is the moon's
orbital velocity. Referring to the velocity vector diagram in Figure 3-2a, it is
seen that v can take on various magnitudes, increasing as its direction moves
further from that of the earth-moon line. The lowest velocity (or energy) v
occurs when the earth-phase velocity is directed to the left of the earth-moon

line, which will be the case for eastward launches.
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The analysis of the exit corridors of circumlunar trajectories
is very similar to that of the entry corridors which were just discussed. Here,
however, to prevent the discussion from becoming too involved, it is necessary
to restrict the outward leg to a "single™ launch trajectory. This is shown in
Figure 3-2b. By a single launch trajectory it is meant that the magnitude and
inertial direction of the velocity at entry into the sphere is fixed whereas the
entry point may vary. This is acceptable since small perturbations of the launch
conditions will have considerable affect on the entry position but very little affect
on the mé.gnitude and orientation of the entry velocity. Choice of position of
entry into the sphere allows two degrees of freedom which may be looked upon as
freedom of impact in the impact parameter plane; that is, in a plane perpendic-
ular to the hyperbolic entry asymptote. Once this impact point has been chosen,
the complete circumlunar trajectory will be determined. Also, for a particular
point in the impact parameter plane, the trajectory may or may not return and
impact the earth. In any case, there will be a certain region in the impact
parameter plane representing earth impact return trajectories. Because of a
one-to-one correspondence of the points in the impact parameter plane to points
at exit on the moon's sphere of influence, a similar region exists at the sphere.
This is shown in Figure 3-2b. Here, contourssimilar to those of the entry
corridor are shown. Specifically, these are constant earth re-entry flight path

angle contours, and again Br = 90° represents the grazing or limiting case.

Analysis of the exit vector diagram is similar to that of the entry
vector diagram. One significant difference is that since the entry velocity
vector has been chosen to be fixed, then the moon phase entry velocity will be
fixed since v = u - Em' Thus, by conservation of energy, the magnitude of
the moon-phase exit velocity will be equal to its entry velocity and therefore
constant. This is indicated in the exit vector diagram by the spherical boundary
on the v vector. By observation, it is clear that the earth-phase exit velocity
will vary in magnitude. Note that the high energy return trajectories are
closer to the earth-moon line indicating that these will have a tendency to
approach the earth in a counterclockwise manner, whereas the low energy
return will approach the earth in a clockwise manner. In any case the return

trajectory may approach the earth in a plane having any inclination with the
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moon's orbit plane leading to the conclusion, similar to that for launch
trajectories, that the grazing return trajectories form the envelope of all

possible return trajectories.

Further, it is clear that the re-entry or impact conditions for
circumlunar trajectories will be very sensitive with respect to the initial or
injection conditions. Since this is the case, once a circumlunar trajectory has
been found which impacts the earth anywhere on return, only slight perturba-
tions in the initial conditions are required to map out the contours shown in
Figure 3-2b. Also, from thediscussion above, it will be possible to satisfy only
fwo re-entry conditions by means of these small perturbations; say, the inclin-
ation of the return trajectory plane and the re-entry angle. If a third condition
is to be satisfied, such as re-entry longitude, a major change in the launch
trajectory is required. This observation is utilized in the construction of the

circumlunar search program discussed in the next section.

3. Input Parameters

It is desirable when solving for circumlunar trajectories to
satisfy certain initial conditions and certain terminal conditions. In this man-
ner, utilizing an iteration scheme similar to that used in the Analytic Lunar

Return Program, it is possible to solve the split end-point problem.

The quantities which will be considered to be inputs into the

Analytic Circumlunar Program are the following:

a) the day of launch

b) the launch azimuth

c) the powered flight angle from launch to burnout
d) the flight path angle at injection

e) the parking orbit altitude

f) the time of flight to the moon

g) the re-entry flight path angle

h) the re-entry altitude

i) the re-entry maneuver downrange angle
j) the maneuver time to touchdown

k) the latitude of the landing site

1) the longitude of the landing site.
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4. Program Logic

The first six quantities above are required to solve for the
outward leg of the earth-phase trajectory. This portion of the program calcu-
lates the time of launch, time of coast (the outward leg is injected from a
parking orbit), conic elements, and the position, velocity and time of any
point on the outward leg. The first aiming point for this portion of the trajec~
tory is the center of a massless moon. The successive aiming points, calcu-
lated from the second iteration on, will be the entry point at the moon's sphere

of influence (with the mass of the moon considered).

The next five input parameters together with the moon-phase exit
velocity from the sphere of influence, which will be equal to the moon-phase
entry velocity, may be used to solve for the earth-phase return leg of the tra-
jectory. As indicated in the Program Logic Chart (Figure 3-3), the solution of
this phase requires an iteration procedure. The reason for this is that although
the magnitude of moon-phase exit velocity is known, its direction is not known
resulting in an unknown earth-phase energy. A first guess, such as assuming
that the energy is equal to that of the outward leg, is made and successive
iterations performed until the calculated earth-phase velocity at the exit point is

consistent with the required moon-phase velocity.

After calculating the return phase conic, the exit velocity vector
may be calculated. This velocity vector may be found with respect to the moon
by subtracting off vectorially the velocity of the moon with respect to the earth
at the time of exit. An ephemeris tape is utilized to obtain the position and

velocity of the moon at any time.

The two velocity vectors, at entrance and exit of the sphere,
completely determine the moon-phase conic; the plane being determined by the
cross-product of the two vectors, and the conic elements, a and e, being
determined by the dot product and the magnitude of the vectors. From the
conic elements, the entry and exit positions at the sphere may be found. At
this point, the calculated positions are compared with those found from the
earth-phase conics. If they lie within specified tolerances, then the search is
complete. If not, the program replaces old positions and times at the sphere by

the new values just calculated and returns to the launch phase calculation to
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PROGRAM LOGIC

COMPUTE:

OUTWARD PHASE
LUNAR TRAJECTORY

COMPUTE:
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AT EXIT FROM §
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Figure 3-3. General Logic Block Diagram
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repeat the entire process. After several loops Presumably tolerances will be
met and the search completed. This process is indicated in Figure 3-3. Thus
far, no use has yet been made of the landing site longitude. The reason for
this was indicated in the last section where it was shown that for a specified
trajectory to the moon only two terminal conditions may be satisfied. To
satisfy the additional constraint on landing site longitude, the total time of
circumlunar flight may be altered. This will give the earth a chance to have
the correct orientation with respect to the moon at re-entry to obtain the
desired landing longitude. The total time of flight is altered by changing the
input time of flight to the moon in the launch phase. Once this is done, the
entire circumlunar search process is repeated until, finally, the landing site

longitude tolerance is met.

5. Applications

The possible uses of the Analytic Circumlunar Program will be

similar to those of the Analytic Lunar Return Program, i.e.,

a. To perform general parametric studies such as relating
the distance of closest approach to the earth-phase energy,
relating the orientations of the conics in various phases,
and calculating launch and re-entry restriction curves.

b. To obtain launch conditions which may be used as a first
approximation in the exact program to search for exact
trajectories. Empirical correction schemes such as
that used in the ALR Program may be added to better
solve the end-point problem.

c. To calculate sensitivity coefficients of terminal conditions
with respect to injection or midcourse conditions. It has
yet to be shown, probably by direct comparison with
exact results, that the coefficients yielded by the Analytic
Circumlunar Program will be of sufficient accuracy to be
useful.

B. Non-Free-Return Circumlunar Trajectories

1. Introduction

The term "non-free-return® circumlunar trajectories applies

to those circumlunar trajectories which require the spacecraft to supply a
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velocity change in the vicinity of the moon. The following missions, for example,

would require a non-free-return trajectory:

a. The spacecraft is to pass around the moon at an inclination
to the lunar equator, i, (say, to pass over a specified
point on the lunar surface) and with a specified distance of
closest approach, h. In general a velocity impulse, AV,
will be required at, say, closest appraoch in order that the
trajectory will return to a specified earth landing site with
a specified re-entry angle. AV will be a function of i and
h (as well as date, etc.) and those i - h combinations
corresponding to AV = 0 will be the free-return circum-
lunar trajectories discussed in the last section.

b. The spacecraft is to enter a circular orbit about the moon
such that it passes over a specified point and at a specified
altitude. After a few revolutions, the spacecraft is to be
injected into a return trajectory. *

c. This mission would be similar to (b) except that a landing
from a circular orbit and then launch into a circular orbit
is added before injection into a return trajectory.
It is clear fr;)m these sample missions that non-free circum-
lunar trajectories may involve any combination of injection into or out of a
circular orbit (or elliptic orbit), direct landing or direct launch, coming within
a specified pericynthion distance, and passing over a specified lunar site. This
section will be concerned with the means by which the existing Analytic Circum-
lunar and the Analytic Lunar Return Programs may be modified to encompass

missions of this type.

2. Modification of the Analytic Circumlunar Program

Presently, the two requirements on the ACP in the vicinity of
the moon are the calculation of the moon centered hyperbola given the entry
and exit velocity vectors at the moon's sphere of influence, and the calculation
of a direct impact trajectory, if desired. For the mission first mentioned

above, it is necessary to calculate the moon centered hyperbola whose

It is assumed in all of these missions that the spacecraft is to return to a
specified landing site on earth with specified re-entry conditions, as in the
ALR program.
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pericynthion distance is specified and which contains a fixed selenographic
vector. The equations for this case are fairly simple since the hyperbolic
plane must contain this vector and the entry velocity vector. The major axis
can be obtained from the vehicle's moon centered energy and the eccentricity

from the pericynthion distance.

If the spacecraft is to perform a direct landing on the moon, the
problem is a little more difficult. In this case, although the selenographic
landing site vector would be known, the eccentricity of the hyperbola could not
be found unless another parameter, such as the flight path angle at the sphere
of influence, were known. Since the solution of the outward leg involves search
iterations, it is a simple matter to approximate this parameter (it is always less

than 2 degrees) and let additional iterations improve upon this value.

For injecting into a circular orbit whose radial distance and
selenographic inclination are specified, a similar situation exists. As soon as
the hyperbolic asymptote is known (selenographic coordinates), the problem is
explicitly solvable. The orientation of the asymptote, however, depends upon

an unknown parameter which, as above, may be found by successive iterations.

One can, of course, think of more complex missions than those
discussed here, such as injecting into elliptic orbits under given constraints.
For modification of the Analytic Circumlunar Program to include such cases,

individual analyses would be required.

3. Modification of the Analytic Lunar Return Program

The return phase of the non-free circumlunar trajectory is
essentially independent of the outgoing phase. Certainly this will be the case
if a lunar landing is a trajectory requirement. In this case, no changes in the
ALR Program are required since the program will presently search for a

return trajectory launched from the surface of the moon.

Next, launch from a circular lunar orbit which passes over a
given lunar site requires only a simple modification to the ALRP if the time of
injection from the orbit is not specified. The change is similar to that discussed
above for the outward phase. A launch may then be made from a given launch
site into a circular orbit followed by injection from the orbit, with the time of

launch and injection being calculated by the program.
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If the spacecraft is already in a specified orbit such as in
missions (a) and (b) above, then the return trajectory, with the inputs required
in the ALR Program, is overspecified and some trajectory parameter must be
released. The parameter which is the least harmful and the most effective is
the time of flight of the return phase. The method that may be used in search-
ing for a "fixed injection time" trajectory is to first assume a total flight time.
Then, after a first iteration, a more accurate flight time may be calculated

which is consistent with the fixed time of injection.

This, however, is not the only problem when launching from a
specified lunar orbit. A critical problem is where in the given orbit one should
inject to return to the earth. It is clear that the most efficient way to return is
to inject from a point on the orbit such that the injection velocity vector is along
the orbital velocity vector. This, however, places a very tight restriction on
the return trajectory. This can be understood more clearly if one remembers
that the velocity at the moon's sphere of influence is determined by the earth
landing conditions, and that this velocity must be contained by the selenocentric
hyperbolic plane. However, if this plane is restricted to that of the orbit plane,
then the chances are that the exit velocity from the sphere is not contained in
the orbit plane. A lunar polar orbit for example will contain the return velocity

vector only twice during a lunar month.

The approach recommended here to cover launch from a specified
lunar orbit is to allow launching out of the orbit plane and then to solve for that
point on the orbit which minimizes the return injection velocity. In this case,
the only modification required of the ALR Program is to launch from a fixed
selenographic point at a fixed time. If necessary the program may also be

modified to empirically search for the minimum injection velocity.
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o ORBIT DETERMINATION STUDIES

IV. ORBIT DETERMINATION THEORY
A. Background

The basic way in which statistical regression analysis enters into
orbit determination may be formulated as follows: A set of noisy, redundant
observations of a spacecraft (radar, optical, etc.) denoted by an n-vector z is
given. From the laws of mechanics and from geometrical considerations, the
true vector value p of the observations is expressible as a known function of a
finite set of parameters denoted by the p-vector y: p = p(y). In the simplest
case, y denotes six components of spacecraft position and velocity at a speci-
fied epoch to. In general, however, the set y may include other non-orbital
parameters such as physical constants, biases in observations, tracking station
location coordinates, etc., subjectto p < n. The nonlinear regression equation
is then

z = ply) + w (4.1)

where w denotes an n-vector of noise on the true values of the observations.
Given 2z, the functional form of pu, and the statistical properties of w, the

problem is to estimate v.

In practice, Eq. (4.1) is linearized by expanding p about an initial
guess g . Letting Ay = y - g, and Az = z - p(go) (the components of
Az are called "residuals"), and letting 6 denote the n x p matrix of partial

derivations of p with respect to v,

the linearized regression equation is
Az = 0 Ay + w. (4.2)

The nonlinear equation (4. 1) is then solved by iteratively solving the linear

equation (4. 2). Since we shall be chiefly concerned in this chapter with the
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solution of the linear equation (4. 2), and not with the problem of convergence,

we shall frequently drop the A's in (4.2) in the future and simply write
z = 6y + w (4. 3)

There are three well-known statistical techniques for the estimation of
y in (4.3). These are described below. In the discussions to follow, the noise
w will be assumed unbiased (except when otherwise noted) with non-singular
n x n covariance matrix R. The diagonal elements of R form the (diagonal)

n x n matrix M2 of variances; M denotes the (positive) square root of MZ.

(i) Least Squares. The least squares (LS) estimate of vy in (4. 3) is

g« = (08 M%) e M%2 (4. 4)
LS

Thus it is necessary to know M, within a constant factor, to compute gLs"

This estimate has the properties that it is linear, unbiased, and it minimizes

the sum of squares of residuals weighted according to MZ; i.e., F(g) =
(z - o0g)' MZ (z - 6g) is a minimum for g = 81+ The covariance matrix
of 81s is

G,g = (00 M* el o' ME R M% 6 (o' M% )7 (4. 5)

(ii) Minimum Variance. The estimate

- -1 -1, -1
EMV (6" R""8)"" 8" R™" =z (4. 6)

has the property that of all linear unbiased estimates, gvy has minimum
covariance matrix. (I.e., if g is any other linear unbiased estimate of y with
covariance matrix G, then GMV < G in the sense that G - GMV is non-
negative definite.) Thus EMV is called the minimum variance {(or sometimes
the Markov) estimate of y. Note that it is necessary to know R, within a

constant factor, to compute gmvy- The covariance matrix of Emy 18

S |
GMV = (8' R~ 0) (4.7)
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(iii) Weighted Least Squares. As a generalization of 81s We shall

also consider estimates of the form

-1
gWLS = (9' w 9) 9' W z (4, 8)

where W is a diagonal, non-negative n xn "weighting" matrix. This estimate,
1

which is linear and unbiased, has the property that it minimizes (z - 0g)

W(z - 6g). It is thus called a weighted least squares (WLS) estimate. The

covariance matrix of Bwis is

LorwrRWo(er weo™ (4.9)

Gwis = (o' W o)~

We shall discuss later some criteria for selecting the matrix W.

There is still a fourth estimation technique. maximum likelihood, which
merits comment here. The maximum likelihood (ML) estimate of y is defined
as that value of g which, when substituted for y in the sample probability
density (or "likelihood") function, maximizes this function for the sample in
question. Thus ML is in general a complicated, nonlinear function of the

sample. It is a theorem of statistics that EML when the noise is

g
gaussian. To the author's knowledge, ML is never uMde in orbit determina-
tion except when accompanied by the assumption that the noise is gaussian, in
which case ML reduces to MV. For these reasons, the authors' feel justified
in neglecting ML, with the understanding that when the noise is gaussian ML

and MV may be used interchangeably.

B. Correlated Observations

One of the SSAS objectives was to study the estirnation techniques just
described in order to arrive at a final technique considered most suitable for
the handling of correlated observations in orbit determination. That study and

its conclusions will be described here.

Consider first the comparison of LS and MYV. The role of WLS will

be considered later. Note first that the LS estimate is the same as the MV
-2
)

estimate when the noise is uncorrelated (i.e., R = M , as is obvious from

(4. 4) and (4.6). However, we are concerned here with the situation when the
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noise is correlated. In that event, there are four important theorems

regarding the relative performance of LS and MYV.

Before proceeding to these theorems, it is necessary to introduce the
concept of the spectrum of the noise correlation matrix. The noise correlation
matrix is simply the normalized covariance matrix, p = MRM. Since R is

by hypothesis non-singular, this matrix will possess n positive eigenvalues

RSTIEERE A\, and n (orthonormal) eigenvectors ¢1, oo s q;n such that
o q& = xi q& , 1 =1, ..., n,

and
Gy = 85, 4 j =1, ..., n

When the noise is stationary, so that P; the spectrum of the corre-

s = P .,
lation matrix has an interesting interpreJtation: iJf the sampling frequency is kept
uniform and constant while the length of the sample is allowed to increase, then
the noise eigenvectors approach the ordinary trigonometric functions asympto-
tically, and the asymptotic eigenvalues are are proportional to the Fourier
transform of the correlation function, i.e., the spectral density of the noise
Process. Since for most noise processes which one expects in orbit deter -
mination, the spectral density has its maximum at zero frequency, this has the
important implication that one can expect the maximum eigenvalues to be assoc-

iated with the "low frequency" eigenvectors.

We shall next introduce the notation G = (o' M% 6)"!. Thus
GUC would be the covariance matrix of the LS (or MV) estimate of y if the
noise were uncorrelated (i.e., R = M'Z). This matrix, it might be added,

is commonly computed whenever an LS determination is performed.

The following three theorems regarding the comparison of LS and MV

are derived in Reference [5] .

Theorem 1. GMV = GLS if and only if the space spanned by the p n-vectors
which are the columns of M 6 coincides with the space spanned by exactly p
eigenvectors of p, then both GI_S and GMV are similar to a diagonal matrix

whose elements are the corresponding p eigenvalues of P.
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Theorem 2. If )\ and \_ . denote the maximum and minimum
e e max min

eigenvalues of p, then

< <
Mmin “uc = SMmy S Grs = Mpin Syc (4.10)
Theorem 3 G <l (x A ) (l + L )G (4.11)
= 2 LS — 4 '"max min’ ‘Wmax X min’ "MV :

A fourth theorem, due to Grenander and Rosenblatt [33], states condi-
tions on the regression vectors (actually, on the columns of M 8) such that
when the noise w is stationary, GLS and GMV will be asymptotically equal
as the length of the sample is increased. The reader is referred to the cited
reference for the exact mathematical formulation. The implications of their

theorem are that G and GM will be asymptotically equal whenever the

regression vectors i-fe polynomi\g.ls, trigonometric functions or a mixture of
these. Because these are just the kinds of regression vectors which one en-
counters in orbit determination, the theorem indicates that when long portions
of data for which the noise is stationary are analyzed by LS method, one can

expect the resulting estimates to be near optimum.

Let us now see how these theorems may be applied to practical orbit
determination work. One of the characteristics of tracking data is that it
usually occurs in several "data types," according to the quantity which is
measured (Doppler, angles, etc.) and according to the tracking station from
which it originates. We shall suppose here that equation (4. 3) decomposes into

k regression equations,

2, = Oy +w,, i=1,...,Kk (4.12)

each of which is a vector regression equation in the same vector regression
parameter y corresponding to one of k mutually uncorrelated data types. Let
ei, Ri’Mi’ etc., be defined for each data type as in Section A. Then for each data

. i s * .
type one can, in principle, construct the LS estimate g;

*
For some data types, e{ Miz 0. may be poorly conditioned or even singular,

making. g; impossible to obtain" explicitly. This is not important to the argument
as long as > ei Mlz 0, is non-singular. Looking at the individual g; is a con-

ceptual, rat%er than a real, operation.
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2 -1 2
= ' 1
g; (Bi Mi Gi) 6; Mi w, (4.13)
having covariance matrix Gi’

G, = (6!M%0,) ! o' M% R M? 0, (6! MZ 0,)"]
1 1 1 1 1 1 1 1 1 1 1
(4.14)

Vgl ay-1
< % (6f M7 0y

where li is the maximum eigenvalue (or an upper bound on the maximum eigen-
value) of the noise correlation matrix p; = Mi Ri Mi going with the ith data

type. (The inequality in (4.14) is an application of Theorem 2.)

Two questions arise regarding the g; : (a) how good are the individual
estimates and (b) how may they best be combined into a single estimate of ?

We shall examine these questions below.

(a) To decide how good the individual estimates are, we shall compare

g; with the optimal MV estimate EMV .’
i

- 1 -1 —1 1 -1
ngi = (B;R;” 0)7 8RR, W, (4. 15)
having covariance matrix GMV s
i
G = (0! R gt (4. 16)
MV, ii Vi )

In most orbit determination situations, one can expect the regression vectors
(i.e., the columns of M @) to resemble low frequency and/or secular functions.
Thus, the regression vectors will ordinarily be expressible as linear combina-
tions of the lower frequency eigenvectors, primarily, with only small contribu-
tions from high frequency eigenvectors occurring. We have also seen that the
low frequency eigenvectors are generally associated with the maximum noise
eigenvalues. Thus, application of Theorems 1, 3 and 4 suggest that Gi and

GMV- will be nearly equal and will, in turn, be closely approximated by
i

. (6, M2

it

exceptional cases, will not be true. Conditions which do hold rigorously in all

Gi)'l. (It should be emphasized that these are tendencies which, in

cases are given by Theorems 1, 2 and 3.)
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(b) Given g; and G, i =1, ..., k, the optimal way to combine
the g; into a single estimate would be to weight each g; according to Gi'l.
However, this procedure has the following disadvantages: (a) it is numerically
complicated and (b) it requires a detailed knowledge of each Ri' We therefore
propose as a compromise solution that each g; be weighted according to
9{ Mi ei/)‘i . This procedure has the advantage in that (a) it is numerically
simple; (b) N (9; MZi ei)'l can be expected to be a rather good approximation
to Gi’ as we have just seen; and (c) since Gi = )‘i (ei le ei)'l, in:all cases,
the weighting is conservative since it does not tend to overly weight highly

correlated data.

The fact which makes the above solution numerically simple is that it

corresponds precisely to using a WLS estimate based on all of the observations,

Bwis = (0'W o loeww (4. 8)

in which the diagonal weighting matrix W is given by

F 5 '
M1“‘13

W = . (4.17)

|
le/)\k

The formula for the covariance matrix Gwis ©°f gwLs 1S given by

equation (4.9). More interesting, perhaps, is the inequality

G <@we lS\(eMie)!, i=1, ...,k (4. 18)

WLS

Here, (6' W 9)'1 constitutes an easily computed upper bound on GWI.S which
satisfies the condition that it is less than or equal to the upper bound on the
covariance matrix of each g;- The reader is referred to Example 1 and 2 at

the end of this Chapter for application of the principles developed in this Section.

By contrast with the above estimate, the conventional LS estimate of vy
based on all of the data is,
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g = (@M%l o mPw
1 X 2
= e'M e)‘ ;e'M w. (4. 19)

(

k
(2
1
k
2 i
1

o M% 0,)" ZeiM,Zeigi
I

Thus, g1 ™ay be rega.rdc‘ezd as a linear combination of the g; in which g; is

weighted according to e' M. 9 . The weakness in this estimation procedure -
comes from the fact that although g; may be a "good" estimate based on the 1th
data, B' M 6 can be a very poor approximation to the inverse of the covariance
matrix of gi. In fact, if the data tlype is highly correlated, ei MZi ei ma); be an
order of magnitude larger than G; (for example, when )\i is of order 10” or
107, as can easily occur. See Example 2 at the end of this Chapter.) This can
lead to overly weighting a highly correlated data type in such a way as to degrade
the accuracy of gLs compared with not using that particular data type at all.

The WLS estimate previously described carefully avoids this pitfall.

Closely associated with the problem of how to handle correlated data is
the problem of how frequently to take observation when it is known that the
observations are correlated in time. This aspect has been studied by Hoel [34]
and others. We do not have any new and fundamental contributions to make at
this time except to re-iterate two well-known principles: (a) Regardless of the
particular nature of the noise, it is generally advisable and profitable to include
a sufficient number of observations so that, in the absence of noise correlations,
the structures of the various regression vectors would be well -followed. A clue
as to when this occurs is to observe when the matrix (1/n) 6' W 0, as a function
of the number of observations n, approaches a stable (asymptotic) matrix.

(b) Adding more observations beyond this point will be of value only if noise
"cancellation" occurs (e.g., when the noise is "white"). When the noise is
correlated, it is usually not profitable to further increase the frequency of
observation beyond the point where observations adjacent in time are 50 percent
correlated (positively, with no intervening minima in the noise correlation

function between the origin and the sampling interval).
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C. Special Topics

Having concluded that a weighted least squares type of estimation was
most suitable for handling correlated data, we attempted next to apply
this technique to some of the special problems which are peculiar to orbit
determination. Specifically, we studied (1) handling a priori data, (2) separa-
ting parameters into classes according to whether or not they are to be esti-
mated, (3) tracking through midcourse maneuvers, and (4) modification of the
computational techniques for onboard use. The results of these stL;dies are

reported in Reference [6] and are summarized here.

When the WLS technique is to be used, it is a great convenience to
introduce the concept of "equivalent-or-worse" uncorrelated noise. The basis
of this idea is as follows: If R denotes the true n xn covariance matrix of
the observational noise w in equation (4. 3), then the WLS weighting matrix
which we have chosen is, in effect, the "largest" n xn diagonal matrix satis-
fying R <W !, This fact results in the inequality

-1

G =(ewe lowrRwe(erwoel<pwe! (4. 20)

WLS
Therefore, if we replace the true noise W with (hypothetical) uncorrelated
noise w* having covariance matrix W_l, any conclusions we may draw con-
cerning the accuracy of our statistical estimates will be "conservative." In
the following discussions, we shall treat the noise as if it were uncorrelated,
having covariance matrix equal to the reciprocal of the diagonal weighting
matrix W, with the understanding that noise which was originally correlated
has already been replaced (conceptually) with equivalent or worse uncorrelated
noise. It might be added that this idea is also useful when simulating the effects
of correlated noise in space mission analysis. In that event, the correlated
noise is replaced in fact, rather than in theory, by uncorrelated noise. (See
Example 2.)

1. A Priori Data

Let the initial guess g, for y in (4.1) have a priori "information"
matrix S. S is a pxp matrix of weights applicable to the a priori value 8o

which is such that when its inverse exists, it is the a priori covariance matrix
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of g, However, there is no requirement that S be non-singular, and S may
have rows and columns of zeros corresponding to components of g, for which
no a priori variances are available. Then the combined estimate of y, based

both on a priori information and on observational data, is given by

g, = g, t (6' W o + S)'1 ' W Az (4. 21)

and has covariance matrix

G = (0'We+5)""| (4.22)

In case several iterations of the WLS procedure are required to solve the non-
linear equation (4.1), then equations for successive estimates become slightly

more complicated:

= -1 -1
By, = By T (O WO HS) eI WaAz |+ (6lWe +S)  S(g -g, ;) |(423

where Azn_1 and en 1 denote residuals and partial deviatives evaluated for
Y=8,_1 the result of the previous iteration. The final covariance matrix is,

of course, given by (4.22) with 0 evaluated at the final estimate of vy.

2. Separation of Parameters

Sometimes the components of the vector parameter y will
naturally fall into two classes, denoted by the sub-vectors Y, and Yoo For
example, Y, may denote orbital parameters while Y, denotes physical con=
stants, tracking station coordinates, or other non-orbital parameters which
affect p. Suppose now that we intend to estimate only Yqo either because we
are unaware of uncertainties in Y, or else because we feel there is insufficient
information contained in the observational data to warrant the simultaneous
estimation of Y, and Yoo It is important to be able to estimate statistically

the effects of using an incorrect value for Y-

We shall rewrite the regression equation (4. 1) as

N
1

nlyp, vp) + w (4. 24)
which linearizes to

Az = el(yl

glo) + eZ(YZ - gzo) + w (4. 25)
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g0 and €20 being the initial guesses for Y, and Yp- When we solve only for
Y,;» the WLS estimate for Yy, is

_ -1

S11 being the a priori information matrix of 810- To analyze the effect of the

error y, - g,q, it is useful to write (4. 26) as

-1

1
Yy + (OIW 61 + Sll)

811 [' Slyy - g

(4.27)
1 1
t 9, w 92(\(2 - gZO) t 8] w w]

This formulation exhibits g;; asan unbiased estimate of Y, in which there are
three sources of error: (1) the a priori estimate g10 of Yy (2) the incorrect
estimate g, for Ypo and (3) the observational noise w. Assuming that g0

%
and 8,0 2are uncorrelated, the covariance matrix of g, is

— ' -1 -1
G = (elwel +Sll) (4.28)

1
11 + (91W61+S

-1 ' '
1‘1) 61W GZAZBZW BI(GIW 91 +S1

1)

where A, is the covariance matrix of uncertainty in 850 The second term on
the right in (4. 28) thus shows statistically the effect of having used the incorrect
value for Yy In Example 3 at the end of this section, the effects of "unsuspected"

biases are derived using equation (4. 28).

%k
In case 810 and gyp are correlated with a priori covariance matrix A,

12 €10
A = |- I = covariance matrix of -=--f ,

LA 820

\

then, the formula for G11 becomes

= ! 1,-1 ! 1, -1 1
G = (OLWel +A11) + (6;We, tA) B8 W6, AyB, Wo,

11

-1 -1 1-1
1 \ t
- 0 WA, Ay - A A58 wel} (6] Wo, + A))
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For purposes of comparison, it is sometimes of interest to know
how well one could have estimated Y; 1is one had simultaneously estimated both

\ and Yo from observational data. Using the notation

| 1 t !
C11 : C12 91W61+S“ i 91W92+512
)
C = |oeoo. e -_-----___-_.: ______________ , (4. 29)
! 1 ! '

of both |---=- ,
Y2 11

C.1 = | (4. 30)

Thus C11 shows how well Y, is determined. The following formula for cl!

is derived in [2] :

1 _ -1 -1
C*" = (C; - €,C;,Cy)) (4. 31)

which may be compared with G1 1

The following relation among the various covariance matrices for

estimates of y, will hold:

(eywe, +s,,) " =c'! =g

-1
- 1 st
11 = (91 We, + Sll) + additional terms| (4. 32)

3. Midcourse Maneuvers

Tracking "through" a midcourse maneuver involves the statistical
combining of pre-midcourse tracking data, the maneuver itself, and post-
midcourse tracking data to re-establish the orbit of the spacecraft. There are,
of course, several ways in which this may be done. Typically, the procedure
is as follows: From pre-midcourse tracking (plus any additional a priori infor-
mation) one computes an estimate Eo and covariance matrix Go applicable to
spacecraft position and velocity at time LI just prior to the maneuver. At

time t,» one commands a maneuver Ag. If the maneuver is impulsive, i.e.,
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of very short duration in time, then Ag consists of the three components of the
velocity impulse. If the maneuver is of appreciable duration, the true maneuver
can be represented by an equivalent impulsive change in all six coordinates of
position and velocity.* In either event, go + Ag becomes the new estimate

of position and velocity at to +, just after the maneuver, and has covariance
matrix G° + A(Ag), where A(Ag) is the covariance matrix of uncertainty in
the actual execution of the maneuver and, as indicated, is generally a function

of Ag. Then g, t Ag and G, *+ A may be used as a priori information in sub-
sequent free-flight tracking.

Consider now the matrix A. The following model of execution
errors is, while not the most general, typical of maneuvers occurring on many
space missions. Let the correction be impulsive so that the commanded maneu-

ver is a vector velocity increment V in the (8, ¢) direction, as shown below:

~
Cd

A4
-

x

The expressions for errors in the execution of V are

5V = €y + €, |V|
6Ve = €5 t €, IV,
8V¢ = eg + €g lVl

The problem of tracking during the actual maneuver is not treated here.
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where |V| is the magnitude of V and

€ = speed error due to engine shutdown
€5 = proportional speed error due to accelerometer
€3 and ¢ 5 = lateral velocity errors due to autopilot
€4 and e ¢ - Pointing errors due to angular misalignment
We assume that the ¢ ; are mutually uncorrelated with zero means and
Ee% =k1, Eeg = ky, Ee':?;’: Eeg = k3, Eei: Eez = k4. A rotation

U will relate the above velocity errors to components in the rectangular refer-

ence system x, y, z:

oV oV
X
6VY = U 6Ve
6Vz 6V¢
where
sin¢ cos® -sin@ cos¢ cos@ |
U = |sin¢g sinf cos® cos ¢ sin 9
cos ¢ 0 -sin ¢

Thus, the final 3 x 3 covariance matrix of execution errors, Z(V), is

—kl | sz i
Y(V) = U ) U+ vi U kg U
_ k| ] k4—
The 6 x 6 matrix A is
01 0
0 1T

When the 3-vector V is specified numerically, as it is during real-

. . N . . . PR
time analysis of an actual mission (or in a Monte Carlo simulation of a mission ),

%
The Monte Carlo simulation of space missions, including midcourse maneuvers,
is described in Part II.
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then A may be evaluated numerically. On the other hand, in the preflight
analysis of a mission, Ag (or V) is not known in advance, but only its probabi-
lity distribution is known, the distribution (or covariance matrix thereof) being
derived from a priori knowledge of how close to nominal the trajectory is
expected to be and the guidance logic which determines the maneuver. In that
event, one averages A over the distribution of the commanded maneuver

Ag (or V) to obtain A. Go + A is then used as the a priori covariance matrix
of position and velocity in subsequent orbit determination analysis. Lass and
Solloway [35] have derived a simple integration technique for evaluating A .
Since this technique is being incorporated into the Tracking Accuracy Prediction
Program and will be described in later documents, it will not be discussed:
further here. We shall merely note that a conservative upper bound on 2 (and

hence on K) is given by

Y oSO+ Vi I (4. 34)

where A\ = max (kl’ k3) and p = max (kZ’ k4).

4. Updated Least Squares

This section describes an orbit determination technique which,
because it does not require the storage of large quantities of observational
data, is especially adapted to real time operation by an on-board computer.
The essential features of this method have been proposed by Smith and
Schmidt P6] who, because of the analogy between the estimation of orbits
and the prediction of a time series by linear filtering, refer to this scheme
as an "optimal filter® method. From our point of view, however, it is more
natural to regard it as a least squares estimation procedure in which estimates

of orbital parameters are continually updated and modified as new data arrives,

Consider the following estimation problem: an initial unbiased
estimate g, of spacecraft position and velocity at time tos together with an
a priori 6 x 6 covariance matrix Go of uncertainty in 8o 18 provided. At
each observation time tk’ k=1, 2, ..., a g-vector of unbiased observations
zq is taken. We assume for the present that all observations are uncorrelated,

and that the observations taken at time tk are characterized by known (diagonal)
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covariance matrix Rk », k=1, 2, ... . Then at each observation time te it
is required to combine the old estimate of the orbit with the new data to form a
new "best" estimate of position and velocity at t and to determine the
covariance matrix GK of gy - This concept is illustrated in Figure 4-1 in

which Yor Yy» Yo - - denote the true position and velocity vector at toys tps
tz, .

In the solution to this problem, it is sufficient to describe the
calculations performed just after the kth set of observations is taken. Let Xk

denote the result of integrating the equations of motion from t tot using

k’
8y _y @2s initial conditions. Then X, serves as an initial estimate of Yx for

which the "a priori" covariance matrix, A is G updated to time t

K’ k-1 K’

A = 00 k1) G | ¢ (k, k-1, (4.35)

where ¢ (k, k-1) is a known 6 x 6 transition matrix satisfying

Dy, = 6k, k1) By, | - (4. 36)

The observations 2z satisfy the non-linear regression equation

Z = My (yk) oWy (4.37)
where My is a known function of the orbital parameters Yyc? and Wi is noise
for which E Wy wk‘ = Rk' We may now proceed exactly as in Section C-1.

The linearized form of (4. 37) is
Az, = 6 Ay, + Wi (4. 38)

where Ayk = Ve - X Azk =z - (Xk), a.nc]i B, = (auk/ayk) isaqgxp
matrix of known coefficients. Setting Wy, = Rlz , the new estimate of Y 18

g, = X t G O W Az |, (4. 39)
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True -
Trajectory
Reference
Trajectory

Figure 4-1.

Updated Least Squares Orbit Determination. Yor Ypoeeo
denote the true position-velocity vectors at time to’ tl’ coe
g, is the "best" estimate at time t., while X is

. K K
gK-1 updated to time tK
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where G, is the covariance matrix of g

k

- (o -1,-1
G = (8, W, 8, + A ")

. (4. 40)

We have described above the basic orbit determination tech-
nique. This technique can be generalized and/or modified to fit different

situations. Some such modifications are described below.

(i) Matrix Identity. An equivalent formulation of (4. 40) is

as follows:

_ ; -1 -1
[Gk = A — A0 (W + 0 A B8) 8 AL (4.41)

When q <= 6, this formula has the computational advantage that the matrix
which must be inverted is of order q x q, rather than 6 x 6 as in (4. 40).
This new formula follows from (4.40) as a result of the matrix identity

derived in Reference [6] )

(ii) Midcourse Maneuvers. The (real time) handling of mid-

course maneuvers can be incorporated quite easily into the updated least
squares routine. For example, if a maneuver occurs just prior to time te o
then the commanded correction should be added to the estimate Xk, and the
covariance matrix of execution errors should be added to 'Ak’ to form a
new a priori estimate and covariance matrix at tk .
D. Examples

Example 1. Estimating Orbital Parameters

This example, extracted from Reference [5] , describes a simula-
tion of the determination of the six orbital elements of an actual space trajectory.
The purpose of this simulation was to develop techniques for analyzing space
missions, rather than to demonstrate any conclusive results concerning a
particular mission. Consequently, only short portions of a trajectory were

tracked, and the noise models used are not necessarily characteristic of any
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particular real system. What is demonstrated is how the following problems

connected with space mission analysis may be systematically studied:
a) What is the effect of correlated noise on orbit determination?

b) How does LS compare with MV when applied to orbit deter-
mination?

c) How sharp is the upper bound on LS and MV covariance
matrices given in Theorem 2 of Section B?

d) What is the result of varying the density and/or extent of
observations when the tracking noise is correlated?

The details of the simulation are described below.
1. Trajectory

A 66-hour earth-moon trajectory injected from a parking orbit
(similar to a RANGER or SURVEYOR trajectory) is used. Table 4-1 lists
injection conditions for this trajectory. The trajectory is tracked from the
Johannesburg DSIF station using f{, A, E data, with tracking commencing
30 minutes after injection. Two data samples A and B are simulated:
Sample A consists of 21 sets of observations taken 20 seconds apart and
covering 400 seconds; Sample B consists of 21 sets of observations taken
80 seconds apart and lasting 1600 seconds. Since three data types are
employed (1.{ , A, E), each sample contains a total of 63 points. The STL

General Tracking Program was used to compute for each sample the 63 x 6

s
oY

The 63 x 63 diagonal matrix M2 is composed of reciprocal

matrix 6 of regression coefficients:

2. Noise

variances of observations, with (Tl.{ = 0.5 fps, Tp = O = 0. 04 degrees.
R, A, E data are assumed to be mutually uncorrelated, with each data type
being auto-correlated in time according to the same 21 x 21 correlation

matrix. Two correlation models I and II are described in Table 4-2a. The
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actual correlation matrices take different forms for the different samples

because of the different data rates. Thus, there are a total of four cases,

IA, IIA, IB, IIB, corresponding to the two samples and two noise models.

For each correlation matrix in Table 4-2a, the maximum eigenvalue is

listed in Table 4-2b. The use of these eigenvalues is described below.

Table 4-1. Initial (Injection) Conditions for Earth-Moon Trajectory
Employed in Orbit Determination Study

Right Ascension 0.
Declination (deg) -0.
Flight Path Angle (deg) 0
Azimuth (deg) 0.
Radius (ft) 0
Velocity (fps) 0.

3. Results

20895299 E3

86249977 E1

. 88045999 E2

12201200 E3

. 21553734 ES8

34889200 E5

For each of the two data samples and two noise correlation

models, the following matrices were computed:

ot 2 -1
Gye = (8 M“9) ,
a2 oyl ot o2
Gig = (8 M“0) o M
— ra o1 a1
Gyy = (8 R70)

By Theorem 2 of Section B,

..

Mnin Guc = Gqv = G

<
LS —

xmax GU C

RM%e8 (8 M%0)"! |

where A\ . and \ are minimum and maximum eigenvalues of the noise
min max

correlation matrix. (For the noise models used here, xmm
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Table 4-2a.

Model I p(t)

Sample A P ij

Sample B P ij

Model II p(t)

Sample A pij

Sample B P ij

Table 4-2b.

Correlation
Matrix

IA
B
1IA

IIB

e-lt' /80

e-li-j|/4

e

-

1

1+ (t/80)Z

1
.2
1+ ()
4
1
1+(i-ﬂ2

Two Noise Correlation Models

(t in sec)
i, j=1, ..., 21
i, j =1, , 21
(t in sec)
i, j=1, , 21
i, j =1, , 21

Maximum and Minimum Eigenvalues of
the Four Correlation Matrices

2.13

2.85
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A Min

0.136
0.11 x 10°
0.464

0.275
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o

identical with the minimum and maximum eigenvalues of the sub-matrices in
Table 4-2.) This implies that for any particular orbital element, the corre-

sponding standard deviations satisfy the inequality

{ Mmin “UC = "MV = "Ls = | Mmax “UC

In Tables 4-3 and 4-4, the standard deviations of orbital elements corre-
sponding to UC, LS and MV estimations are listed, together with l xmax D-UC ,
to enable LS and MV to be compared and to provide a check on how sharp the

above upper bound is.

Although our examples are too limited to permit one to draw

general conclusions, the following tendencies are apparent:

a) MYV does not show a marked improvement over LLS. In
this connection, the relative performance of MV over LS is better for Model II

noise than for Model I.

b) Kmax Tyc is @ useful upper bound on o1 s and oMy Since
it is not overly pessimistic. This is particularly true for the longer (in time)

Sample B.

The fact that the points are more densely packed in
Sample A does not contribute significantly to the accuracy of estimates
based on that sample, since adjacent observations are highly correlated.
Thus, one could have expected approximately the same accuracy of esti-

mation from Sample A if only every fourth point were used.

Example 2. Weighting Correlated Data

Experience indicates that the angular measurements of azimuth, A,
and elevation, E, made by the Goldstone DSIF station contain errors conforming

roughly to the following rnodel:*
E(6A) = E(BE) = 0, E(6A xdE) = 0 ,

E(5A(f) x SA(f + t)) = E(SE(f) x SE(t'+t)) = R(t)

x
This noise is in addition to a residual (uncorrected) bias of 0. 005°. We ignore
the effects of this bias here. E(...) denotT4hj$ expected value.
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Table 4-3. Comparison of LS, MV and Uncorrelated Case Standard Deviations
of Uncertainty in Orbital Elements at Epoch (Injection) for Lunar
Trajectory, Data Sample A

Right Ascension (deg)
Declination (deg)
Flight Path Angle (deg)
Azimuth (deg)

Radius (ft)

Velocity (fps)

Right Ascension (deg)
Declination (deg)
Flight Path Angle (deg)
Azimuth (deg)

Radius (ft)

Velocity (fps)

GLS CMV
0.35 0. 31
0.30 0.27
0.27 0.24
0.075 0.069

4 4
8.5x10 7.5 x10
81 72

NOISE MODEL I

0.37 0. 30
0.33 0.26
0.29 0.22
0.082 0.066
9.1 x10% 7.0x10
86 66

NOISE MODEL II

4

o

\I_)\max “uc

UG
0.18 0. 46
0.15 0. 40
0.14 0. 36
0.038 0.097
4.5x104 11x104
42 110
0.18 0.52.
0.15 0.45
0.14 0. 41
0.038 0.11
4.5x10% 13x10%
42 130

Table 4-4. Comparison of IS, MV and Uncorrelated Case Standard Deviations
of Uncertainty in Orbital Elements at Epoch (Injection) for Lunar
Trajectory, Data Sample B

Right Ascension (deg)
Declination (deg)
Flight Path Angle (deg)
Azimuth (deg)

Radius (ft)

Velocity (fps)

Right Ascension (deg)
Declination (deg)
Flight Path Angle (deg)
Azimuth (deg)

Radius (ft)

Velocity (fps)

TLs "MV
0.13 0.12
0.11 0.11
0.091 0.089
0.037 0.036

4 4
3.3x10 3.3x10
30 30

NOISE MODEL I

0.14 0.13
0.13 0.12
0.098 0.095
0.040 0.040

4 4
3.6 x10 3.5x10
33 32

NOISE MODE} 44
-133-

UG dxmaxGUC
0.091 0.13
0.083 0.12
0.067 0.098
0.027 0.039

4 4
2.5x10 3.6 x10
23 33
0.091 0.15
0.083 0.14
0.067 0.11
0.027 0.045

4 4
2.5x10% 4.1x10
23 37



where
R(t) = 1074 [1 - TU"] + 107% [1 - Tgl'tulm] (deg®), 0 = |t]| =10 sec

- 1074 [1 - Tsl—tolmr] (deg?), 10 sec = [t| = 18,000 sec

i

0, 18,000 sec < |t| .

The autocovariance function R(t) is illustrated in Figure 4-2. The RMS value
of the noise is ¢ = \JR(0) = 0.014°.

10'4 deg2
R,
1 t(sec
5 s > t(sec)
10'4 degz
R;
—> t(sec)
1 0 18,000
Figure 4-2. Autocovariance Function R = Rl + R, for Noise

on Goldstone Angular Tracking Data.

We wish to determine the weight to be applied to this angular data to
include the effects of correlations, according to Section B. The weight is most
easily expressed in terms of an "equivalent or worse o," o, which is the product
of the true ¢ = 0.014° and the square root of the maximum eigenvalue of the

. - . L
noise covaria : = .
C nce matrix: o o kmax
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The value of o will depend on the sampling interval At. First, let

At = 1sec Equation (37) of [5] gives anupper bound on’ Nmax:

X
0 . i
Amax < Z lpkl = —sz(t) dt = 9,000
- 00 o
thus & = (0.0140) (9,000)1/2 = 1.35°, Table 4-5 summarizes T as a
function of At, with )‘max being determined by the above formula. For a
data rate of one-per-minute (At = 60 sec), & = O. 174°. An even more con-
servative value of & = 0.2° was used for the "new DSIF model" in Part II.
At g
(sec) (deg)
At <1 1.35 (At)_llz
1 1.35
10 0. 43
60 0.174
600 0. 055
18,000 0.014
At > 18,000 0.014

Example 3. Effects of Unsuspected Biases

This example involves the simulated tracking of a 90-hour moon-earth
trajectory, using the three DSIF Stations (Goldstone, Johannesburg and
Woomera). 1.7\, A and E data are taken at a rate of one set of observations per
minute from 12 to 80 hours after injection. Since a controlled re-entry into the
earth's atmosphere was one of the objectives of the mission, the ability to pre-
dict and control the re-entry flight path angle B, which was nominally
96 degrees, was a measure of the "success'" of the mission and is so used here.

The following results for different simulations were obtained:

a) The data was assumed uncorrelated with 01'{ = 0.5 fps and
Cp = 0p = 0.04°. Using conventional LS orbit determination, it was found
that the uncertainty in the predicted flight path angle was o, = O. 018°,

B
b) The effect of unsuspected angular biases was studied by applying

Equation (4.28) using 0.0l degree as the 1 - o uncertainty in the angular bias
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at each tracking station. When the data was weighed as before, "f{ = 0.5 fps,
Op = O = 0.04°, the resulting total uncertainty in B, due to both random
and bias errors, was o, = 0.031° Thus, by weighing the angular observations

according to their RMS values, the effect of biases in angular measurements is

nearly to double the uncertainty in the predicted value of B.

c) Angular data was discarded and the LS fit was made on R data,

only, with o-f'{ = 0.5 fps. The resultant uncertainty in f was cr‘3 = 0.025°.

Here, then, we have an example in which the inclusion of "bad" (i.e.,
improperly weighted) angular data led to a poorer orbit determination than if
that data had been omitted entirely. It is an interesting problem to determine
the proper, or optimum, weighting of the angular data (including angular biases)
which would minimize the resultant value of U'B. Experimenting with different
weights indicated that the proper weighting was slightly less than 0.2 degree,

leading to crﬁ = 0.022 degree.
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V. TRACKING ACCURACY PREDICTION PROGRAM
A. Introduction

In the design of space flight trajectories and hardware it is necessary
to determine the answers to questions of the following nature:
In a nominal operation, how accurately will the spacecraft trajectory

or certain terminal variables be determined from tracking, as a
function of time throughout the flight?

What is the sensitivity of this nominal accuracy to the number and
location of tracking stations, the quantities measured, observation
noise models, data biases, etc.?

What is the effect of uncertainties in physical constants and station
locations on the nominal accuracy?

What is the effect of a midcourse correction on the orbit determination

accuracy?

The Tracking Accuracy Prediction Program (TAPP) has been designed
specifically for the statistical analysis of such preflight orbit determination
problems, as distinct from the operational processing of data to determine a
particular orbit once a flight has occurred. In developing the program, empha-
sis has been placed on computational speed, capability of handling a wide range
of problems, and ease of future program modification. To these ends, the
following features have been included: For speed, trajectory computation is
based on a three-dimensional, multi-center, patched conic model so that no
integration is required.* In addition, the ephemerides of celestial bodies are
computed from formulas rather than by table look-up, and frequent tracking

observations are interpolated from a basic mesh of time steps.

The orbit computational scheme is completely general in that it can
deal with all types of conics with essentially no alterations in the formulas. No
difficulties are encountered in such troublesome. cases as parabolic, near para-
bolic, circular, and zero inclination orbits. This flexibility is made possible

by the use of the Cartesian coordinates at a fixed epoch as the orbital elements

Extensive comparison at STL of the results of such models and the results of
"exact" integrating programs has shown good agreement for both lunar and
interplanetary flights.
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along with Herrick's unified parameters (Reference[37}) for finding the spacecraft

position velocity vector on the orbit.

A variety of observation types may be simulated, including range,
range rate, hour angle, declination, elevation, and azimuth from earth-based
stations; planetary diameters and star-planet sightings from the spacecraft; and
range and range rate from a lunar-based station. Rise and set times are com-
puted, allowing the user to specify the observations to be taken by convenient
""rules" and placing the burden of generating the observation times on the program.
A number of noise models and station locations are prestored in the program and
may be specified by a code number. Other models and station locations may, of
course, be entered as input quantities. The effects of uncertainties in station
locations, physical constants, and biases may be studied. Up to 25 orbital ele-
ments and non-orbital parameters may be solved for, and the effect of executing
a midcourse maneuver may be simulated. A choice of five printout formats is
provided covering trajectory variables, midcourse quantities, and tracking

matrices, and varying in the amount and type of detail printed out.

TAPP Mod I was designed for the tracking analysis of flights containing
a single midcourse correction. An extended version (TAPP Mod II) is under
development which will allow simulation of n midcourse and terminal guidance
corrections. This latter program employs a Monte Carlo method of analysis
and is intended for combined tracking-guidance "mission analysis," including
studies of midcourse fuel requirements, relative efficiencies of guidance logics,

and the study of adaptive correction systems.

B. General Program Description

In the computation of orbits, it is assumed that an orbit is determined
as a function of time from the equations of motion if the combined initial position
and velocity vector, X is given at one instant; toe In practice X is never
known exactly but can be estimated from observations made along the orbit.

Such observations are subject to random noise which introduces fluctuations

into the calculated values of xo.

The object of the present program is the evaluation of orbit determin-

ation accuracy on the basis of a given noise model and the details of observations

ial



along the orbit. For our purpose, the accuracy criterion is the covariance
matrix of a set of variables which are known functions of x . Usually these
variables are taken to be the impact parameter vector with respect to a target
planet or in the case of elliptic motion, the spacecraft position vector at a

fixed time.

In order to find the covariance matrix referred to above, the method
of least squares is used to estimate the initial position and velocity vector, X
from the observations. The covariance matrix for X, is obtained from the
weighted least squares matrices. The covariance matrix for functions of X
can then be obtained by a linear transformation. (That is, except for effects of

physical constants which will be discussed later.)

Briefly, the tasks required for finding the covariance matrix of impact

errors are outlined in block diagram form in Figure 5-1.

In addition,to the primary purpose of tracking accuracy evaluation, the
program may sometimes be used to compute from X
1) The approximate spacecraft trajectory and a set of auxiliary
quantities such as the elements of the earth-escape hyperbola,

various geometrical quantities associated with the sun-phase
transfer orbit, and the vector impact parameter at the target planet.

2) The spacecraft rise and set times from a number of stations over
a time span of interest

3) Target sensitivity coefficients for midcourse maneuvers at pres-
cribed points in the orbit

4) The program may also be used to simulate midcourse maneuver
errors from a given set of systems performance parameters and
prescribed tracking data.

The functions of the major program blocks are described in the following

paragraphs.

1. Orbit and Ephemeris Computation

The trajectory of a spacecraft is usually found by solving the equa-
tions of motion including all pertinent force terms. To enhance the spedd of
orbit computation, deviations from Kepler motion are neglected so that all trajec-

tories are combinations of conics. For cases in which there is a sequence of
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primary attracting centers, a succession of conics are matched together at the
boundaries of the sphere of action for the various bodies. Such a procedure
removes the necessity for any integration of the equations of motion. The

computation scheme for orbits and variations is shown in Figure 5-2.

In addition, the ephemerides for fhe pertinent celestial bodies are
computed from Kepler formulas using mean orbital elements which include
secular variation terms but not periodic ones. A provision is made to accept
osculating elements at a fixed epoch if higher accuracy is required. However,
in most instances, the tracking accuracy should not be critically affected by

small deviations in the positions of the celestial bodies from their actual position.

2. Search Routine

One required program input is a set of initial orbit conditions
yielding approximately the desired final conditions at the target body. These
input conditions will normally be obtained from one of the standard lunar or
interplanetary trajectory design programs available. To allow for differences in
computational models used by TAPP and other programs, a search routine is pros:
vided in TAPP to achieve a required set of final conditions. This is accomplished
by a differential correction process on tile initial conditions. Given an initial
vector, X which yields a reasonably close value of the required final vector
b; the routine computes the differential coefficient matrix, aii , and finds

the correction vector

-1
dx = -5{}1%- [b (required) - b (computed)]

The new value X = x, + 6 x, are used to compute the new values bl’ The
process is repeated until the required conditions are achieved. The search may
be carried out by varying the injection conditions at the earth or the velocity at

infinity on the escape hyperbola.

3. Rise and Set Times

To insure that the simulated observation times correspond realisti-
cally with the given orbit and tracking stations, visibility times from each station

are computed over the period of interest.
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|

]

Actual midcourse
time, tmc
End run time, te'
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Compute ‘
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Figure 5-2. Orbit and Variational Equation Block Diagram
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This is accomplished in the program by computing the elevation
angle, E, from the tracker at prescribed intervals over the span of tracking.

In particular, we compute

Rs' P

6§ = sin E - sin =|E—l—l—-["3in\(
Y0 s 1] (o]

where
Rs is the position vector of the station
P is the vector from station to spacecraft
Y is the minimum elevation before visibility is said to occur

(usually different from zero)

The spacecraft is visible from a given station if & > 0. The rise-set intervals

are found by interpolating for the times at which & changes sign.

In case of lunar and deep space vehicles, the spacecraft has a
slow angular rate with respect to the earth after the initial day or two. Since
the station coordinates have a period of one sidereal day, the rise-set times on
the nth day are reasonable first approximations to the rise-set times on the
n + 1st day. This fact is used to speed the determination of rise and set times

over a long trajectory time span.

In anticipation of lunar satellites, the rise-set routine also finds
the occultation times of the spacecraft by the moon. Only visible, non-occulted

times are used in simulated observations.

4, Radar Derivatives

The radar derivatives are the regression coefficients appearing in

the least squares estimation of x_. In the present program they are obtained

o
by use of the differentiation chain rule. Let Ri be the ith radar observation;

t the time of the observation; x(t) the position and velocityaal{ time t; and X,

1

T is
xO

%
the value of x at the epoch, to; then in matrix notation,

* . s ‘s
For illustrative purposes, we are considering x_ to be the initial condition
vector. However, x, may, in general, include physical constants elements
as well,
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OR;\ (B8R4 /px

axo ox axo

where

oR,
_5_1 is the (1 x 6) matrix of derivatives of R;j with respect to
x x(t). It is obtained directly from the definitions of Ri(x)

by differentiation.

«ag{i is the (6 x 6) variational matrix for the change & x(t) due

to an initial increment 6 X e

Since conic formulas are used to approximate the trajectory, %{’E— is obtained
o

by differentiation of the Kepler ,formulas.

5. Normal Matrix

Let R be the vector consisting of all the individual observations,
Ri' The elements of the matrix A = Bz% are formed in accordance with a
prescribed set of rules which dictate the type and frequency of the simulated

tracking data. The normal matrix is then simply
1
AwA = (2R} w (2R
ox 0x
o o

where a prime denotes transpose, and W is the diagonal matrix of final
weights assigned to the observations. W is computed in accordance with a set
of rules which relate it to the noise moment matrix M. The matrix M will,

in turn, be typically computed from Table 5-1.

6. Tracking Accuracy Output

The covariance matrix of the impact vector (or some appropriate
substitute) is the criterion of tracking accuracy. To elaborate on its computa-

tion, we define the notations:

AN
R - m vector of actual observations including noise
X, - 0 vector of true orbital parameters to be estimated

x - initial estimate of x
o ot
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Table 5-1. Typical Noise Model for Terrestrial Tracker

T o
Data Type Noise Source (typical values) (typical values)
angular readout error 0. 003 <10 seconds
measurements antenna deflections 0. 007 ~ 5 hours
(each type) jitter 0.01 <10 seconds
doppler shift oscillator drift (_i) R T
round off —< <10 seconds
2V3 (T
range clock error KC R 1 hour
systems error 5 meters 5 hours
round off 10 meters <10 seconds
R is the slant range
T is the counting interval
(£/£) is the percentage drift rate
C is the velocity of light
KC = constant
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P - q vector of parameters (usually physical constants) which
affect the values of the computed observations but which
are not being estimated

R = R(x_, p) - m vector of computed values of the observables
Based on the initial values, x, and p

- covariance matrix of the initial estimate, X,

op
m x m diagonal matrix of final least squares weights

o
p - covariance matrix of the vector p (assumed given)
. . . . oR
A - m xn matrix of partial derivatives, 5%
o
P . . . . oR
- m x q matrix of partial derivatives, [———

In most of the following, we absorb \/ W into A and P matrices,

A'WA ——= A'A WA — A

A'WP —> A'P wp — P

In performing the least squares fit, we hold the vector p fixed but include the
effects of its uncertainty in computing the covariance matrix of impact errors.
In general, the p vector will include quantities such as mass of the earth,
moon, station loaction, velocity of light, etc. The errors in X, P and the
noise on the observations are assumed to be independent of each other for the

present.

If the assumed values of p coincides with the true values, Py then
the least squares estimate of X 4 is the value xls which minimizes the

weighted sum

5 = [R - Rixy p) - Al - x)]  W[R - Rix,. p) - Alx, - x))]

If, in addition, X, 1is an a priori estimate of x . with covariance matrix

I',» then the combined least squares and a priori estimate, §0, is obtained
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. %
from the equation

X = + KA [ﬁ R( 5.1
Xo = xO - XO, Pt)] ( . )
-1 -1
K = (A'A + I‘o )
A small increment 6p = p - P, will yield a slightly different estimate, i\o,
where
~n o _ . A
X, = x°+KA [R-R(xop) -Pﬁp] (5. 2)
If 6% = % -x_ and 6x = x - x , we obtain from (5. 2)
o o ot o o ot
A . [/\ ]
6x:o 6xo + KA R - R(xot’ pt) - A 6xo - P op (5. 3)
= K[A' SR - A'P 6p + r'l ox ]
o o
* o I, = 0 (no a priori knowledge), the estimate of x__ reduces to x)
ot 5
where
- N [ . ]
X = X + (A'A) A' [ R R(xo, Pt) (5.1a)

which is the usual formula based on a least squares criterion. Equation (5. 1)
combines the a priori estimate with the least squares estimate, all into one
operation. As shown in Reference [17 » it is equivalent to finding the least
squares fit as in (5. la), and then combining with the a priori estimate in
accordance with the formula

%, = 1t N A7l + oot (5.1b
X0 T A1s I‘o s s o % -1b)

where Ajg is the covariance matrix of x;;. The methods are equivalent and
the covariance matrix of X, is given by the first term of (5. 4) if one assumes
that there are no errors in p.
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The covariance matrix of the estimate is

- ) [} —
A = 8RR = K[J + A PAPP'A]K (5. 4)

1

J = A'NA + 1° (5. 5)

where the bar denotes an enxemble average and Ap is the a priori covariance
matrix of p; N is the product of the diagonal matrix of the variances on the
noise and the weighting matrix W. The matrix, A, always has included in it
the factor W ; otherwise an additional factor of W would appear in (5. 5).

Figure 5-3 is a flow diagram of the orbit determination simulation.

The differential errors in the impact vector, b = b(xo, P) are related

linearly to 6§° and 6p. We have

5b = \ 6320 + pép

-
s

-KA'P

where

*
1l

<
fl

The covariance matrix of b is

Ay

&b &b' = (M 65:‘0 + pép) (M 5;’20 + pép)’
(5. 6)

A KIKN' + (k + X y) Ap(u + Ay)!

N\ and W are the usual explicit partial derivatives of b with respect to X, and
P respectively. &b = Aybp is an additional error term in b due to an error in

N s e .
x, arising from an incremental change &p.

Equation (5. 6) is the formula for finding A, when box_ and &p are

independent. Since Ab is the criterion which measures the tracking accuracy,
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much of the remainder of this write-up deals with the details and options

pertaining to its computation from hypothetical observations.

As shown in Figure 5-4, the impact pararrrﬁe)er b is a vector comnsisting

of the two components of the miss vector, m = m,| and the total flight time,
tf.
™y
b = m,
te

m, and m, define a plane which will be called the impact parameter plane.
Ay = b 6b" is a 3 x 3 matrix whose upper left hand 2 x 2 is given by
Am = om Om' . We rewrite this as

2
oy po 0o,
Ay = 2 (5.7)
po o, o,
The quadratic form &m' An-—xl ém = constant describes a dispersion ellipse of

constant probability in the (ml, mz) plane. A_ may be diagonalized by means

of an orthogonal transformation to new variables M where

M = Um
so that )\1 0
— 1=
AM = UAm U (5. 8)
0 1N

U is a rotation from the m, axis to the major axis of the dispersion ellipse.

The angle of rotation is 6 where (assume 0'1_>_0'2) m,
0
2p0. 0
=1 -1 12 \
0 = z-tan > 5 m, (5.9)
o, - o5

The quantities Ab’ AM’ and 6 are computed at various stages of the simula-

tion as an indication of the tracking accuracy.
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Figure 5-4. Illustration of the B-Plane Coordinate System
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7. Midcourse Maneuvers

Another use of the program is to simulate the errors of a
midcourse velocity correction. This is done by supplementing Ab with an
error covariance matrix due to the imperfect execution of the maneuver. Since
the maneuver system errors and the tracking noise are assumed to be indepen-
dent, the covariance matrices from the two sources add directly. The program

may be instructed to perform either a hypothetical or an actual maneuver.

The difference between them is that in the first case the correction
velocity errors are not propagated into the future. Their effects on Ab are
computed at the time of the hypothetical maneuver and are dropped for further
calculations. The object is to display the effects on Ab of the maneuver errors

at various points along the orbit as the amount of tracking and the error coeffi-

cients vary in time.

In contrast, the simulation of an actual midcourse implies that the
maneuver errors are permanently implanted in the orbit as they always are in
real life. All computations of Ab after the maneuver will have included in
them the errors arising from the performance of the maneuver. In both cases
we assume that the mean of the midcourse velocity magnitude is zero so that
the orbit remains unaltered from the nominal even though the errors are added
on. This a a valid procedure if everything is linear, i.e., the error coefficients
do not change rapidly in the vicinity of the nominal. The program may be
required to perform a series of hypothetical maneuvers but only one actual one .
at this tirne.*

a. Hypothetical Maneuvers (abbré&viated hm)

Usually, a sequence of the hypothetical maneuvers are called
for along an orbit. To illustrate the effect of the ith point, use the symbols:

A

bi covariance matrix of b just priof to the ith hm

th

A covariance matrix of b just after the i hm

I

ai

£
TAPP Mod II, under development, will have a multiple midcourse maneuver

capability.
16y,




A = covariance matrix of velocity errors due to imperfect
€ execution of the required maneuver. A is a 3 x 3 matrix
0 O
but may be used as a partitioned 6 x 6 matrix A _ =
x, = (r., v.) - the spacecraft position and velocity vector with
respeét to the force center at tss the time of the i hm
Ai = covariance matrix of X, due to tracking
x, = position and velocity at the initial epoch, to of the phase
during which the maneuver occurs
Ao = covariance matrix of X due to tracking only

A straightforward way of computing Ab is to update the epoch to

the i® hm; te A, due totracking; A i just A, = [ LA
el ; compute i ue to tracking; bi s ju bi ~ '3_)? Ai -5)? .
Aai is found by replacing Ai by Ai + Ae in Abi' However, frequent
updating involves some tedious matrix manipulations if physical constants are
involved. A somewhat simpler scheme is used for hm's in the present pro-

gram by keeping the epoch at t . At t, compute

8x0 8xo !
Aoi = 3vi Ae 5vi
after which
_ ob ob\' _ ob ob \'
Aai B Abi + <5xo> Aoi <5x° - <5xo) (Ao + A‘oi) <5xo)

(neglecting physical constant errors in this case)

ox ax, -1
For computational purposes, | n— is obtained from T in which

- . i o

x, = (ri, vi) i.e. ) )

ox

9x ax. \~ or.

o\ _ i _ i

J9%. | ~ \0x_ - 89x

i o o

o
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b. Actual Maneuvers

After an actual maneuver, the epoch is moved to the time of

the maneuver. Calling the new point (»to, xo) with a priori covariance matrix

Ay then
t
_ ob ( + ) ob
Ay ~ 5xo Ao Ae axo

If more tracking data is added after to’ then the effects of

the new data can be incorporated into the covariance matrix of X, by the

formula
o~
Ao = KJK
where
K = [(A +a)t+a a |l
- o e 1 1
J A' A -1
= 1N11+(A0+Ae)

A1 and N1 are quantities referring to the new data having meanings which

correspond to A and N in (5.5). The covariance matrix for b is then

simply '
_ [eb\ ~ [e8b
Aa - 8x0 Ao Exo

The program also covers the more complicated case where

physical constant uncertainties are considered.
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